Adaptive trajectory control system auv based on a direct propagation neural network
- Authors: Romanova V.R.1, Zuev S.V.2
-
Affiliations:
- V.I. Vernadsky Crimean Federal University
- Belgorod State Technological University named after V.G. Shukhov
- Issue: No 108 (2024)
- Pages: 192-216
- Section: Vehicle control and navigation
- URL: https://ogarev-online.ru/1819-2440/article/view/284361
- DOI: https://doi.org/10.25728/ubs.2024.108.11
- ID: 284361
Cite item
Full Text
Abstract
About the authors
Valeria Romanovna Romanova
V.I. Vernadsky Crimean Federal University
Email: lero4ka2004ro@gmail.com
Simferopol
Sergei Valentinovich Zuev
Belgorod State Technological University named after V.G. Shukhov
Email: sergey.zuev@bk.ru
Belgorod
References
- БОРЕЙКО А.А., ИНЗАРЦЕВ А.В., МАШОШИН А.И., ПАВИН А.М. и др. Система управления АНПА большой автономности на базе мультиагентного подхода // Под-водные исследования и робототехника. – 2019. – Т. 28, №2 – С. 23–31.
- РАШИД Т. Создаем нейронную сеть. – СПб. : ООО «Диалектика», 2019. – 272 с.
- ЦЫПКИН Я.З. Адаптация и обучение в автоматических системах. – М.: Гл. ред. физ.-мат. лит-ры изд-ва «Наука», 1968. – 400 с.
- ABOUSSALAH A.M., LEE C. Continuous control with Stacked Deep Dynamic Recurrent Reinforcement Learning for portfolio optimization // Expert Systems with Applica-tions. – 2020. – Vol. 140. – P. 1–11.
- CARLUCHO I., PAULA M.D., ACOSTA G.G. Double Q-PID algorithm for mobile robot control // Expert Systems with Applications. – 2019. – Vol. 137. – P. 292–307.
- CHE G., YU Z. Neural-network estimators based fault-tolerant tracking control for AUV via ADP with rudders faults and ocean current disturbance // Neurocomputing. – 2020. – Vol. 411. – P. 442–454.
- Deep Neural Evolution / Eds.: H. Iba, N. Noman // Springer Singapore. – 2020. – 438 p. – ISBN 978-981-15-3685-4 (electronic).
- DEPTULA P., BELL Z.I., DOUCETTE E.A., CURTIS J.W. et al. Data-based reinforcement learning approximate optimal control for an uncertain nonlinear system with control effec-tiveness faults // Automatica. – 2020. – Vol. 116. – P. 1–10.
- ELHAKI O., SHOJAEI K. A robust neural network approxi-mation-based prescribed performance output-feedback con-troller for autonomous underwater vehicles with actuators saturation // Engineering Applications of Artificial Intelli-gence – 2020. – Vol. 88. – P. 1–16.
- ELHAKI O., SHOJAEI K. Neural network-based target tracking control of underactuated autonomous underwater vehicles with a prescribed performance // Ocean Engineer-ing. – 2018. – Vol. 167. – P. 239–256.
- GLATT R., SILVA F.L., BIANCHI R.A., COSTA A.H. DE-CAF: Deep Case-based Policy Inference for knowledge transfer in Reinforcement Learning // Expert Systems with Applications. – 2020. – Vol. 156. – P. 1–13.
- HAN H., WEI Y., YE X., LIU W. Modeling and fuzzy de-coupling control of an underwater vehicle-manipulator sys-tem // IEEE Access. – 2020. – Vol. 8. – P. 18962–18983.
- HUANG Z, BAI W., LI T., LONG Y. et al. Adaptive rein-forcement learning optimal tracking control for strict-feedback nonlinear systems with prescribed performance // Information Sciences. – 2023. – Vol. 621. – P. 407–423.
- JAIN A., THOKE A.S., PATEL R.N. Fault classification of double circuit transmission line using artificial neural net-work // Int. Journal of Electrical Systems Science and Engi-neering. – 2008. – Vol. 1. – P. 230–235.
- LEI M. Nonlinear diving stability and control for an AUV via singular perturbation // Ocean Engineering. – 2020. – Vol. 197. – P. 1–11.
- LEWIS F.L., VRABIE D.L. Reinforcement learning and adaptive dynamic programming for feedback control // IEEE Circuits and Systems magazine. – 2009. – Vol. 9. – P. 32–50.
- MAHANTY R.N., DUTTA GUPTA P.B. Comparison of Fault Classification Methods Based on Wavelet Analysis and ANN // Electric Power Components and Systems. – 2006. – Vol. 34 – P. 47–60.
- MONTGOMERY D.C. Design and Analysis of Experiments. – John Wiley & Sons, Inc, 1997. – P. 757.
- NEVES G., RUIZ M., FONTINELE J., OLIVEIRA L. Rotated object detection with forward-looking sonar in underwater applications // Expert Systems with Applications. – 2020. – Vol. 140. – P. 1–18.
- PENG Z., ZHAO Y., HU J., GHOSH B.K. Data-driven opti-mal tracking control of discrete-time multi-agent systems with two-stage policy iteration algorithm // Information Sci-ences. – 2020. – Vol. 481. – P. 189–202.
- RASHIDI A.J., KARIMI B., KHODAPARAST A. A con-strained predictive controller for AUV and computational optimization using Laguerre functions in unknown environ-ments // Int. J. Control Autom. Syst. – 2020. – Vol. 18. – P. 753–767.
- RODRÍGUEZ J., CASTAÑEDA H., GORDILLO J.L. La-grange modeling and navigation based on quaternion for controlling a micro AUV under perturbations // Robotics and Autonomous Systems. – 2020. – Vol. 124. – P. 1–12.
- SHEN C., SHI Y. Distributed implementation of nonlinear model predictive control for AUV trajectory tracking // Au-tomatica. – 2020. – Vol. 115. – P. 1–9.
- SU H., ZHANG H., SUN S., CAI Y. Integral reinforcement learning-based online adaptive event-triggered control for non-zero-sum games of partially unknown nonlinear systems // Neurocomputing. – 2020. – Vol. 377. – P. 243–255.
- SUN Y., XIANGRUI R., ZHANG G., XIANGBIN W., XU H. AUV path following controlled by modified Deep Deter-ministic Policy Gradient // Ocean Engineering. – 2020. – Vol. 210. – P. 1–14.
- SURYENDU C., SUBUDHI B. Formation control of multiple autonomous underwater vehicles under communication de-lays // IEEE Trans. on circuits and systems II: Express briefs. – 2020. – Vol. 67, No. 12. – P. 3182–3186.
- TENG M., YE L., YUXIN Z., YANQING J. et al. An AUV localization and path planning algorithm for terrain-aided navigation // ISA Transactions. – 2020. – Vol. 103. – P. 215–227.
- VAMVOUDAKIS K.G., LEWIS F.L. Online actor–critic al-gorithm to solve the continuous-time infinite horizon optimal control problem // Automatica. – 2010. – Vol. 46. – P. 878–888.
- WANG X., ZERR B., THOMAS H., CLEMENT B. et al. Pat-tern formation of multi-AUV systems with the optical sensor based on displacement-based formation control // Int. Jour-nal of Systems Science. – 2020. – Vol.51:2. – P. 348–367.
- WEN G., CHEN C.L., LI W.N. Simplified optimized control using reinforcement learning algorithm for a class of sto-chastic nonlinear systems // Information Sciences. – 2020. – Vol. 517. – P. 230–243.
- What’s New in Artificial Intelligence from the 2022 Gartner Hype Cycle [Электронный ресурс] // Gartner. – URL: https://tinyurl.com/4z4vrhcy (дата обращения: 26.06.2023).
- XIA Y., XU K., WANG W., XU G. et al. Optimal robust tra-jectory tracking control of a X-rudder AUV with velocity sen-sor failures and uncertainties // Ocean Engineering. – 2020. – Vol. 198. – P. 1–16.
- YAN X-P., WANG S-W., MA F., LIU Y-C. et al. A novel path planning approach for smart cargo ships based on ani-sotropic fast marching // Expert Systems with Applications. – 2020. – Vol. 159. – P. 1–16.
- YUAN H, SHUAI C., MA J., FANG Y. An efficient control allocation algorithm for over-actuated AUVs trajectory tracking with fault-tolerant control // Ocean Engineering. – 2023. – Vol. 273. – P. 113976.
- ZHENG Z., RUAN L., ZHU M., GUO X. Reinforcement learning control for underactuated surface vessel with out-put error constraints and uncertainties // Neurocomputing. – 2020. – Vol. 399. – P. 479–490.
Supplementary files
