The utilization of virtual structures in the formation of scenario-cognitive models based on the utilization of expert knowledge

Cover Page

Cite item

Full Text

Abstract

This study is dedicated to investigating the problem of enhancing the adequacy of scenario-cognitive models based on expert knowledge within a limited set of factors. One of the most important tasks in the formation of a scenario-cognitive model based on expert knowledge is the problem of taking into account the total influence of the external environment, i.e., those factors that remain outside the structure of the model, but influence the achievement of the required accuracy of modeling results. When constructing scenario-cognitive models of complex socio-economic and political systems, it is usually necessary to apply a significant simplification, which consists in concluding all the diversity of factors and connections between them in a relatively simple and understandable model. The quality of a model built on the basis of combining expert data should be determined by the adequacy of the image of a real object or situation. Consequently, when forming models using expert knowledge, it is also necessary to “expertly close” the structure of the model with some virtual substructures that are capable of generating certain signals reflecting the influence of the external environment. Typical signals simulating the influences of the external environment are presented. Typical structures of expert identification of the impact of the external environment on scenario model factors are introduced. An overall pattern of the scenario-cognitive model is presented, which is formed based on expert knowledge and consists of a multitude of actual factors of a complex system and proxy structures.

About the authors

Vladimir Leopol'dovich Schultz

Institute of Socio-political Research of RAS

Email: 9380752@mail.ru
Moscow

Igor Viktorovich Chernov

V.A. Trapeznikov Institute of Control Sciences of RAS

Email: ichernov@gmail.com
Moscow

References

  1. ГУБАНОВ Д.А., КОРГИН Н.А., НОВИКОВ Д.А., РАЙ-КОВ А.Н. Сетевая экспертиза / Под ред. чл.-к. РАН Д.А. Новикова, проф. А.Н. Райкова. – М.: Эгвес, 2010. – 168 с.
  2. ДРАНКО О.И., НОВИКОВ Д.А., РАЙКОВ А.Н., ЧЕР-НОВ И.В. Управление развитием региона. Моделирова-ние возможностей. – М.: URSS, ООО «ЛЕНАНД», 2023. – 432 с.
  3. Модели и методы анализа и синтеза сценариев разви-тия социально-экономических систем: в 2-х кн. / Под ред. В.Л. Шульца, В.В. Кульбы. – М.: Наука, 2012. – Кн. 1 – 304 с., кн. 2. – 358 с.
  4. ОРЛОВ А.И. Искусственный интеллект: экспертные оценки : учебник. – М.: Ай Пи Ар Медиа, 2022. – 436 c.
  5. SEN A., SRIVASTAVA M. Regression Analysis: Theory, Methods, and Applications. – Springer-Verlag, Berlin, 2011. – 348 p.
  6. STULP F., SIGAUD O. Many Regression Algorithms, One Unified Model: A Review // Neural Networks. – 2015. –Vol. 69. – P. 60–79.
  7. The Delphi Method: Techniques and Applications / Eds.: H.A. Linstone, M. Turoff. 1975. – 620 p.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).