Anisotropy-based control design for linear time--invariant systems with moments constraints of disturbances

Cover Page

Cite item

Full Text

Abstract

In this paper, a linear discrete time-invariant system with control under the influence of a colored disturbance is considered. The external disturbance is selected from the class of non-centered stationary Gaussian sequences of random vectors with a known restriction on the level of mean anisotropy. For the specified class of control objects, a dynamic regulator is introduced, with the help of which it is necessary to ensure the boundedness of the anisotropic norm from an external disturbance to the controlled output of a closed--loop system. The control design problem is to construct an anisotropy--based dynamic regulator in terms of state--space representation. The boundedness of the closed--loop system is provided by anisotropy--based small gain theorem. Using linearizing reversible variable change, the problem can be reduced to a numerical solution of the convex optimization problem with special constraints characteristic of anisotropy--based theory. In the formulation of the problem, it is assumed that the expectation of the external disturbance is unknown, but a condition on it in the form of inequality is known. This parameter causes an additional constraint to appear in the convex optimization problem. The resulting system of inequalities is linear matrix inequalities in combination with an inequality of a special type, which is nonlinear with respect to unknown parameters, but at the same time convex in these parameters. The problem of finding the regulator matrices can be solved by standard methods.

About the authors

Alexander Viktorovich Yurchenkov

V.A. Trapeznikov Institute of Control Sciences of RAS

Email: alexander.yurchenkov@yandex.ru
Moscow

References

  1. БАЛАНДИН Д.В., БИРЮКОВ Р.С., КОГАН М.М. Много-критериальная оптимизация индуцированных норм линей-ных опреаторов: прямая и двойственная задачи управленияи фильтрации // Известия РАН. Теория и системы управле-ния. – 2022. – №2 . – С. 43–57.
  2. БЕЛОВ И.Р., КУСТОВ А.Ю. О применении фильтра Кал-мана в задаче оценивания при слабо окрашенных вход-ных шумах // Управление большими системами. – 2023. –Вып. 103. – С. 94–120.
  3. ВЛАДИМИРОВ И.Г., КУРДЮКОВ А.П., СЕМЕНОВ А.В.Анизотропия сигналов и энтропия линейных стационарныхсистем // Доклады РАН. – 1995. – Т. 342, №5. – С. 583–585.
  4. КУСТОВ А.Ю. Параметризация оптимальных анизотро-пийных регуляторов // Автоматика и телемеханика. – 2023. –№10. – С. 59–71.
  5. ЧАЙКОВСКИЙ М.М. Нахождение сильно минимизирую-щего ранг решения линейного матричного неравенства //Автоматика и телемеханика. – 2007. – №9. – С. 96–105.
  6. ЧАЙКОВСКИЙ М.М., КУРДЮКОВ А.П. Критерий стро-гой ограниченности анизотропийной нормы заданным зна-чением в терминах матричных неравенств // Доклады Ака-демии наук. – 2011. – Т. – 441, №3. – С. 318–321.
  7. ЧАЙКОВСКИЙ М.М. Синтез субоптимальных регулято-ров методами выпуклой оптимизации и полуопределенногопрограммирования // Управление большими системами. –2015. – Вып. 42. – С. 100–152.
  8. ЧАЙКОВСКИЙ М.М., ТИМИН В.Н., КУРДЮКОВ А.П.Синтез анизотропийного субоптимального пид регулято-ра для дискретной линейной стационарной системы: од-номерный случай // Автоматика и телемеханика. – 2019. –Вып. 9. – С. 156–172.
  9. ЮРЧЕНКОВ А.В., КУСТОВ А.Ю., КУРДЮКОВ А.П. Усло-вия ограниченности анизотропийной нормы системы смультипликативными шумами // Доклады Академии наук. –2016. – Т. 467, №4. – С. 396–399.
  10. ЮРЧЕНКОВ А.В., БЕЛОВ И.Р. Лемма об ограниченностианизотропийной нормы стационарной системы с мульти-пликативными шумами // Дифференциальные уравнения. –2023. – Т. 59, №11. – С. 1550–1560.
  11. BELOV I.R. On the Approximation of Anisotropic Controllerby ℋ 2 -Optimal Controller // Proc. of the 32th MediterraneanConference on Control and Automation. – 2024. – Vol. 9. –P. 891–895.
  12. BOICHENKOV V.A., BELOV A.A., ANDRIANOVA O.G.Axiomatic Foundations of Anisotropy-Based and SpectralEntropy Analysis: A Comparative Study // Mathematics. –2023. – Vol. 11, No. 12. – P. 2751 (1–10).
  13. DIAMOND P., VLADIMIROV I., KURDYUKOV A. et al.Anisotropy–based performance analysis of linear discrete timeinvariant control systems // Int. Journal of Control. – 2001. –Vol. 74, No. 1. – P. 28–42.
  14. DOYLE J.C., GLOVER K., KHARGONEKAR P.P. et al. State–space solution to standard ℋ 2 and ℋ ∞ control problems //IEEE Trans. Automat. Contr. – 1989. – Vol. 34. – P. 831–846.
  15. GAHINET P. Explicit controller formulas for LMI-based ℋ ∞synthesis // Automatica. – 1996. – Vol. 32. – P. 1007–1014.
  16. GU D.–W., TSAI M.C., O’YOUNG S.D. et al. State–spaceformulae for discrete–time ℋ ∞ optimization // Int. J. Contr. –1989. – Vol. 49. – P. 1683–1723.
  17. HADDAD W.M., BERNSTEIN D.S., MUSTAFA D. Mixedℋ 2 /ℋ ∞ regulation and estimation: The discrete time case //Syst. Control Lett. – 1991. – Vol. 16. – P. 235–247.
  18. KHARGONEKAR P.P., ROTEA M.A. Mixed ℋ 2 /ℋ ∞ control:a convex optimization approach // IEEE Trans. Automat.Contr. – 2011. – Vol. 36. – P. 824–837.
  19. KUSTOV A.YU., KURDYUKOV A.P., YURCHENKOV A.VOn the Anisotropy–Based Bounded Real Lemma Formulationfor the Systems with Disturbance–Term Multiplicative Noise //Proc. of the 12th IFAC Int. Workshop on Adaptation andLearning in Control and Signal Processing. – 2016. – P. 1–5.
  20. KUSTOV A.YU., TIMIN V.N. Suboptimal Anisotropy-basedControl for Linear Discrete Time Varying Systems withNoncentered Disturbances // IFAC–PapersOnLine. – 2017. –Vol. 50, Iss. 1. – P. 6122–6127.
  21. KUSTOV A.YU. State-Space Formulas for Anisotropic Normof Linear Discrete Time Varying Stochastic System // Proc.of the 15th Int. Conf. on Electrical Engineering, ComputingScience and Automatic Control. – 2018. – P. 1–6.
  22. KURDYUKOV A.P., MAXIMOV E.A. TCHAI-KOVSKY M.M. Anisotropy–Based Bounded Real Lemma //Proc. of the 19th Int. Symposium on Mathematical Theory ofNetworks and Systems. – 2010. – P. 2391–2397.
  23. KURDYUKOV A.P., YURCHENKOV A.V., KUSTOV A.YU.Robust Stability in Anisotropy–Based Theory with Non–ZeroMean of Input Sequence // Proc. of the 21st Int. Symposiumon Mathematical Theory of Networks and Systems. – 2014. –P. 208–214.
  24. SCHERER C.W., GAHINET P., CHILALI M. Multiobjectiveoutput-feedback control via LMI optimization // IEEE Trans. onAutomatic Control. – 1997. – Vol 42. – P. 896–911.
  25. SEMYONOV A.V., VLADIMIROV I.G., KURDJUKOV A.P.Stochastic approach to ℋ ∞ -optimization // Proc. of the 33rdConf. on Decision and Control.–1994.–Vol.3.–P.2249–2250.
  26. STURM J.F. Using SeDuMi 1.02, a MATLAB toolbox foroptimization over symmetric cones // Optimization Methods andSoftware. – 1999. – Vol. 11–12. – P. 625–653.
  27. VLADIMIROV I.G., KURDYUKOV A.P., SEMENOV A.V.On computing the anisotropic norm of linear discrete–time–invariant systems // Proc. of the 13 IFAC World Congr. –1996. – Paper IFAC–2d–01.6. – H. – P. 179–184.
  28. VLADIMIROV I.G., KURDYUKOV A.P., SEMENOV A.V.State–space solution to anisotropy–based stochastic ℋ ∞ -optimization problem // Proc. of the 13 IFAC World Congr. –1996. – Paper IFAC–3d–01.6. – H. – P. 427–432.
  29. TCHAIKOVSKY M.M., KURDYUKOV A.P., TIMIN V.N.Strict anisotropic norm bounded real lemma in terms ofinequalities // Proc. of the 18th IFAC World Congr. – 2011. –P. 2332–2337.
  30. TCHAIKOVSKY M.M. Static Output Feedback AnisotropicController Design by LMI–based Approach: General andSpecial Cases // Proc. of the American Control Conf. ACC. –2012. – P. 5208–5213.
  31. WEIWEI L., TODOROV E., SKELTON R.E. Estimation andControl Systems with Multiplicative Noise via Linear MatrixInequalities // Am. Contr. Conf. – 2005. – P. 1811–1816.
  32. YURCHENKOV A.V., KUSTOV A.YU., TIMIN V.N. Thesensor network estimation with dropouts: Anisotropy-basedapproach // Automatica.–2023.–Vol.151.–P.110924(1–8).
  33. ZHOU K., GLOVER K., BODENHEIMER B.A. et al. Mixedℋ 2 and ℋ ∞ performance objectives I: Robust performanceanalysis, II: Optimal control // IEEE Trans. Automat. Contr. –1994. – Vol. –39. – P. 1564–1587.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».