About an unusual case in the pole placement problem

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The pole placement problem using a static output feedback is considered. If the problem is solvable, then the spectrum of the closed-loop system matrix can be located at any given points of the complex half-plane, symmetric with respect to the real axis. This makes it possible not only to stabilize the system, but also to set the required characteristics, such as stability margin, transition time, and others. It is known that if the multiplication of the number of inputs and outputs is greater than the dimension of the system, then the pole placement problem for a system in the form of a transfer matrix is solvable. The article shows that this ratio is not a sufficient condition for a system defined in the state space. There is an exceptional case in which the pole placement problem is fundamentally unsolvable. This case is simple discovered be means of multiplying of matrixes output and input. If this product gives a zero matrix, then due to the matrix trace consistency of the closed system matrix, the problem is unsolvable both in the real and in the complex domain. Moreover, the product of the output and input matrices is invariant with respect to the basis. A necessary condition for solvability is formulated.

Авторлар туралы

Aleksey Mukhin

Lobachevsky State University

Email: muhin-aleksei@yandex.ru
Nizhny Novgorod

Әдебиет тізімі

  1. БАЛАНДИН Д.В., КОГАН М.М. Управление движением вер-тикального жесткого ротора, вращающегося в электромаг-нитных подшипниках // Известия РАН. ТиСУ. – 2011. – №5. – С. 13–17.
  2. МУХИН А.В. Математическое моделирование процесса ста-билизации жесткого ротора, вращающего в электромагнит-ных подшипниках // Труды НГТУ им. Р.Е. Алексеева. – 2021. – №2. – С. 36–48.
  3. ПОЛЯК Б.Т., ЩЕРБАКОВ П.С. Трудные задачи линейной теории управления. Некоторые подходы к решению // Авто-матика и телемеханика. – 2005. – №5. – С. 4–46.
  4. ШУМАФОВ М.М. Стабилизация линейных систем управле-ния. Проблема назначения полюсов. Обзор // Вестник СПбГУ. Математика. Механика. Астрономия. – 2019. – Т. 6(64), вып. 4. – С. 564–591.
  5. BELOZYOROV V.Ye. New solution method of linear static output feedback design problem for linear control systems // Linear Alge-bra and its Applications. – 2016. – Vol. 54. – P. 204–227.
  6. BERNSTEIN D.S. Some Open Problems in Matrix Theory Arising in Linear Systems and Control // Linear Algebra and its Applica-tions. – 1992. – Vol. 162–164. – P. 409–432.
  7. BROCKETT R., BYRNES C. Multivariable Nyquist criteria, loci root and pole placement: A geometric viewpoint // IEEE Trans. Automat. Control. – 1981. – Vol. 26. – P. 271–284.
  8. EREMENKO A., GABRIELOV A. Pole placement by static out-put feedback for generic linear system // SIAM J. Control Optim. – 2002. – Vol. 41. – P. 303–312.
  9. HAMID M. The resolution of the equation and the pole assignment problem: A general approach // Automatica. – 2017. – Vol. 79. – P. 162–166.
  10. ISIDORI A. Nonlinear Control System. – Berlin; New York: Springer-Verlag, 1985.
  11. KIMURA H. On pole placement by gain output feedback // IEEE Trans. Automat. Control. –1975. – Vol. 20. – P. 509–519.
  12. MOSTAFA EL-SAYED M.E., TAWHID M.A., ELWAN E.R. Nonlinear conjugate gradient methods for the output feedback pole assignment problem // Pacific Journal Optimization. – 2016. – Vol. 12(1). – P. 55–85.
  13. SCHMID R., NTOGRAMATZIDIS L., NGYEN T. et al. A unified method for optimal arbitrary placement // Automatica. – 2014. – Vol. 50. – P. 2150–2154.
  14. SHANA M., PRASANNA C., MADHU N.B. Approximating con-strained minimum cost input–output selection for generic arbitrary pole placement in structured systems // Automatica. – 2019. – Vol. 107. – P. 200–210.
  15. SYRMOS V.L, ABDALLAH C.T., DORATO P et al. Static Out-put Feedback. A Survey // Automatica. – 1997. – Vol. 33(2). – P. 125–137.
  16. WILLEMS J.C., HESSELINK W.H. Generic properties of the pole placement problem // Proc. of the 7th IFAC Congress. – 1978. – P. 1725–1729.
  17. WANG X. Pole placement by static output feedback // J. Math. System, Estimation and Control. – 1992. – Vol. 2. – P. 205–218.
  18. YANG K., ORSI R. Generalized pole placement via based on pro-jections // Automatica. – 2006. – Vol. 42. – P. 2143–2150.
  19. YANNAKOUDACIS A.G. The static output feedback from the invariant point of view // IMA Journal of Mathematical Control and Information. – 2016. – Vol. 33. –P. 639–669.
  20. ZUBOV N.E., MIKRIN E.A., MISRIKHANOV M.Sh. et al. Con-trolling the finite eigenvalues of the descriptor system // Doklady Akademy Nauk. – 2015. – No. 460(4). – P. 381–384.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML


Creative Commons License
Бұл мақала лицензия бойынша қол жетімді Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).