Об особенностях применения метода вспомогательной системы при диагностике режима обобщенной хаотической синхронизации
- Авторы: Губенко П.П.1, Короновский А.А.1, Москаленко О.И.1
-
Учреждения:
- Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
- Выпуск: Том 25, № 4 (2025)
- Страницы: 408-413
- Раздел: Радиофизика, электроника, акустика
- URL: https://ogarev-online.ru/1817-3020/article/view/357324
- DOI: https://doi.org/10.18500/1817-3020-2025-25-4-408-413
- EDN: https://elibrary.ru/GQHDTE
- ID: 357324
Цитировать
Полный текст
Аннотация
Об авторах
Павел Петрович Губенко
Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
ORCID iD: 0009-0003-4012-1878
410012, Россия, г. Саратов, ул. Астраханская, 83
Алексей Александрович Короновский
Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
ORCID iD: 0000-0003-3585-317X
SPIN-код: 3882-6431
Scopus Author ID: 7004189995
ResearcherId: C-5597-2008
410012, Россия, г. Саратов, ул. Астраханская, 83
Ольга Игоревна Москаленко
Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
ORCID iD: 0000-0001-5727-5169
SPIN-код: 7186-3695
Scopus Author ID: 10038769200
ResearcherId: D-4420-2011
410012, Россия, г. Саратов, ул. Астраханская, 83
Список литературы
- Balanov A. G., Janson N. B., Postnov D. E., Sosnovtseva O. V. Synchronization: From Simple to Complex. Berlin, Springer, 2009. XIV, 426 p. https://doi.org/10.1007/978-3-540-72128-4
- Pikovsky A., Rosenblum M., Kurths J. Synchronization: A Uiversal Concept in Nonlinear Sciences. Cambridge, Cambridge University Press, 2001. XIX, 411 p. https://doi.org/10.1119/1/1475332
- Rulkov N. F., Sushchik M. M., Tsimring L. S., Abarbanel H. D. I. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E, 1995, vol. 51, pp. 980–994. https://www.doi.org/10.1103/PhysRevE.51.980
- Koronovskii A. A., Moskalenko O. I., Selskii A. O. Intermittent generalized synchronization and modified system approach: Discrete maps. Phys. Rev. E, 2024, vol. 109, art. 064217. https://doi.org/10.1103/PhysRevE.109.064217
- Koronovskii A. A., Moskalenko O. I., Hramov A. E. On the use of chaotic synchronization for secure communication. Phys. Usp., 2009, vol. 52, no. 12, pp. 1213–1238. https://www.doi.org/10.3367/UFNe.0179.200912c.1281
- Kulagin N. D., Andreev A. V, Koronovskii A. A., Moskalenko O. I., Sergeev A. P., Badarin A. A., Hramov A. E. Intermittency in predicting the behavior of stochastic systems using reservoir computing. Phys. Rev. E, 2025, vol. 111, art. 024209. https://doi.org/10.1103/PhysRevE.111.024209
- Hramov A. E., Kulagin N. D., Pisarchik A. N., Andreev A. V. Strong and weak prediction of stochastic dynamics using reservoir computing. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2025, vol. 35, art. 033140. https://doi.org/10.1063/5.0252908
- Abarbanel H. D. I., Rulkov N. F., Sushchik M. M. Generalized synchronization of chaos: The auxiliary system approach. Phys. Rev. E, 1996, vol. 53, pp. 4528–4535. https://www.doi.org/10.1103/PhysRevE.53.4528
- Kocarev L., Parlitz U. Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. Phys. Rev. Lett., 1996, vol. 76, pp. 1816–1819. https://doi.org/10.1103/PhysRevLett.76.1816
- Pyragas K. Properties of generalized synchronization of chaos. Nonlinear Analysis: Modelling and Control (Vilnius, IMI), 1998, no. 3, pp. 101–129. https://doi.org/10.15388/NA.1998.3.0.15261
- Zheng Z., Hu G. Generalized synchronization versus phase synchronization. Phys. Rev. E, 2000, vol. 62, pp. 7882–7885. https://doi.org/10.1103/PhysRevE.62.7882
- Moskalenko O. I., Koronovskii A. A., Hramov A. E. Inapplicability of an auxiliary-system approach to chaotic oscillators with mutual-type coupling and complex networks. Phys. Rev. E, 2013, vol. 87, art. 064901. https://doi.org/10.1103/PhysRevE.87.064901
- González-Miranda J. M. Synchronization of symmetric chaotic systems. Phys. Rev. E, 1996, vol. 53, pp. 5656–5669. https://doi.org/10.1103/PhysRevE.53.5656
- González-Miranda J. M. Bistable generalized synchronization of chaotic systems. Computer Physics Communications, 1999, vol. 121–122, pp. 429–431.
- Pecora L. M., Carroll T. L. Synchronization in chaotic systems. Phys. Rev. Lett., 1990, vol. 64, pp. 821–824. https://doi.org/10.1103/PhysRevLett.64.821
- Guan S., Lai C.-H., Wei G. W. Bistable chaos without symmetry in generalized synchronization. Phys. Rev. E, 2005, vol. 71, art. 036209. https://doi.org/10.1103/PhysRevE.71.036209
- Grebogi C., Ott E., Yorke J. A. Fractal basin boundaries, long-lived chaotic transients, and unstable-unstable pair bifurcation. Phys. Rev. Lett., 1983, vol. 50, pp. 935–938. https://doi.org/10.1103/PhysRevLett.50.935
- Proshin Yu. N., Shakirov M. A. Modelirovanie i vizualizatsiya neline’nykh dinamicheskikh system. Chast’ 1. Tochechnye otobrazheniya [Modeling and Visualization of Nonlinear Dynamic Systems. Part 1. Point Mappings]. Kazan, Kazan State University Publ., 2017. 36 p. Available at: https://kpfu.ru/portal/docs/F1367493855/Tochechnye.otobrazheniya.pdf (accessed September 20, 2025) (in Russian).
- Moskalenko O. I., Koronovskii A. A., Selskii A. O., Evstifeev E. V. A Method to detect the characteristics of intermittent generalized synchronization based on calculation of probability of the synchronous regime observation. Tech. Phys. Lett., 2024, vol. 50, pp. 209–212. https://doi.org/10.1134/S1063785023180116
- Hramov A. E., Koronovskii A. A. Intermittent generalized synchronization in unidirectionally coupled chaotic oscillators. Europhys. Lett., 2005, vol. 70, pp. 169–175. https://doi.org/10.1209/epl/i2004–10488–6
- Hramov A. E., Koronovskii A. A. Generalized synchronization: A modified system approach. Phys. Rev. E, 2005, vol. 71, art. 067201. https://doi.org/10.1103/PhysRevE.71.067201
Дополнительные файлы


