Восстановление параметров компартментной модели динамических систем на примере эпидемиологической модели SIR

Обложка

Цитировать

Полный текст

Аннотация

Представлен улучшенный алгоритм оценки значений управляющих параметров модельных динамических систем. Описан принцип работы алгоритма и продемонстрирована его работа на примере модели распространения эпидемий SIR в виде системы из трех обыкновенных дифференциальных уравнений. Метод демонстрирует хорошие результаты по восстановлению параметров данной модели как в случае установившихся решений, отличных от состояния равновесия, так и в случае переходных процессов. Рассмотрено влияние шума в исходных данных на качество определения значений модельных параметров.

Об авторах

Михаил Алексеевич Коробко

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского

ORCID iD: 0009-0004-5697-0329
410012, Россия, г. Саратов, ул. Астраханская, 83

Андрей Владимирович Бух

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского

ORCID iD: 0000-0002-4786-6157
SPIN-код: 7104-5862
410012, Россия, г. Саратов, ул. Астраханская, 83

Список литературы

  1. Bocharov G. A., Rihan F. A. Numerical modelling in biosciences using delay differential equations. Journal of Computational and Applied Mathematics, 2000, vol. 125, no. 1–2, pp. 183–199. https://doi.org/10.1016/S0377-0427(00)00468-4
  2. Polynikis A., Hogan S. J., Di Bernardo M. Comparing different ODE modelling approaches for gene regulatory networks. Journal of Theoretical Biology, 2009, vol. 261, no. 4, pp. 511–530. https://doi.org/10.1016/j.jtbi.2009.07.040
  3. Miao H., Xia X., Perelson A. S., Wu H. On identifiability of nonlinear ODE models and applications in viral dynamics. SIAM Review, 2011, vol. 53, no. 1, pp. 3–39. https//doi.org/10.1137/090757009
  4. Dahlhoff E. P. Biochemical indicators of stress and metabolism: Applications for marine ecological studies. The Annual Review of Physiology, 2004, vol. 66, pp. 183–207. https://doi.org/10.1146/annurev.physiol.66.032102.114509
  5. McLean K. A. P., McAuley K. B. Mathematical modelling of chemical processes – obtaining the best model predictions and parameter estimates using identifiability and estimability procedures. The Canadian Journal of Chemical Engineering, 2012, vol. 90, no. 2, pp. 351–366. https://doi.org/10.1002/cjce.20660
  6. Boukouvala F., Hasan M. M. F., Floudas C. A. Global optimization of general constrained grey-box models: New method and its application to constrained PDEs for pressure swing adsorption. Journal of Global Optimization, 2017, vol. 67, pp. 3–42. https://doi.org/10.1007/s10898-015-0376-2
  7. Edsberg L., Wedin P. Å. Numerical tools for parameter estimation in ODE-systems. Optimization Methods and Software, 1995, vol. 6, no. 3, pp. 193–217. https://doi.org/10.1080/10556789508805633
  8. Bukh A. V., Kashtanova S. V., Shepelev I. A. Complex error minimization algorithm with adaptive change rate. Chaos, Solitons & Fractals, 2023, vol. 176, art. 114154. https://doi.org/10.1016/j.chaos.2023.114154
  9. Wright A. H. Genetic algorithms for real parameter optimization. Foundations of Genetic Algorithms, 1991, vol. 1, pp. 205–218. https://doi.org/10.1016/B978-0-08-050684-5.50016-1
  10. Dondelinger F., Husmeier D., Rogers S., Filippone M. ODE parameter inference using adaptive gradient matching with Gaussian processes. Journal of Machine Learning Research, 2013, vol. 31, pp. 216–228.
  11. Newton I. The Principia: Mathematical Principles of Natural Philosophy. Translation by I. Bernard Cohen and Anne Whitman. Berkeley, Univ. of California Press, 1999. 974 p.
  12. Fletcher R., Reeves C. M. Function minimization by conjugate gradients. The Computer Journal, 1964, vol. 7, no. 2, pp. 149–154. https://doi.org/10.1093/comjnl/7.2.149
  13. Martí R., Resende M. G. C., Ribeiro C. C. Multi-start methods for combinatorial optimization. European Journal of Operational Research, 2013, vol. 226, iss. 1, pp. 1–8. https://doi.org/10.1016/j.ejor.2012.10.012
  14. Mirjalili S., Jangir P., Saremi S. Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Applied Intelligence, 2017, vol. 46, pp. 79–95. https//doi.org/10.1007/s10489-016-0825-8
  15. Hu X., Shonkwiler R., Spruill M. C. Random restarts in global optimization. Georgia Institute of technology, Atlanta, GA, 1994. 32 p. Available at: https://www.researchgate.net/publication/40220792_Random_Restarts_in_Global_Optimization (accessed 20 September 2024).
  16. Goffe W. L., Ferrier G. D., Rogers J. Global optimization of statistical functions with simulated annealing. Journal of Econometrics, 1994, vol. 60, no. 1–2, pp. 65–99. https://doi.org/10.1016/0304-4076(94)90038-8
  17. Mirjalili S., Mirjalili S. M., Lewis A. Grey wolf optimizer. Advances in Engineering Software, 2014, vol. 69, pp. 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007
  18. Trivedi I. N., Pradeep J., Narottam J., Arvind K., Dilip L. Novel adaptive whale optimization algorithm for global optimization. Indian Journal of Science and Technology, 2016, vol. 9, no. 3, pp. 319–326. https://doi.org/10.17485/ijst/2016/v9i38/101939
  19. Buch H., Trivedi I. N., Jangir P. Moth flame optimization to solve optimal power flow with non-parametric statistical evaluation validation. Cogent Engineering, 2017, vol. 4, no. 1, art. 1286731. https://doi.org/10.1080/23311916.2017.1286731
  20. Jangir P., Parmar S. A., Trivedi I. N., Bhesdadiya R. H. A novel hybrid particle swarm optimizer with multi verse optimizer for global numerical optimization and optimal reactive power dispatch problem. Engineering Science and Technology, an International Journal, 2017, vol. 20, no. 2, pp. 570–586. https://doi.org/1016/j.jestch.2016.10.007
  21. Jin Y., Wang W., Xiao S. An SIRS model with a nonlinear incidence rate. Chaos, Solitons & Fractals, 2007, vol. 34, no. 5, pp. 1482–1497. https://doi.org/10.1016/j.chaos.2006.04.022
  22. Barman M., Mishra N. Hopf bifurcation analysis for a delayed nonlinear-SEIR epidemic model on networks. Chaos, Solitons & Fractals, 2024, vol. 178, art. 114351. https://doi.org/10.1016/j.chaos.2023.114351
  23. Buonomo B., Giacobbe A. Oscillations in SIR behavioural epidemic models: The interplay between behaviour and overexposure to infection. Chaos, Solitons & Fractals, 2023, vol. 174, art. 113782. https://doi.org/10.1016/j.chaos.2023.113782

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».