Компьютерное моделирование флуктуаций проводимости в динамической перколяционной модели на основе резистивных сеток
- Авторы: Кочкуров Л.А.1, Зимняков Д.А.1
-
Учреждения:
- Саратовский государственный технический университет имени Гагарина Ю. А.
- Выпуск: Том 25, № 1 (2025)
- Страницы: 106-112
- Раздел: Нанотехнологии, наноматериалы и метаматериалы
- URL: https://ogarev-online.ru/1817-3020/article/view/357281
- DOI: https://doi.org/10.18500/1817-3020-2025-25-1-106-112
- EDN: https://elibrary.ru/VZFIRB
- ID: 357281
Цитировать
Полный текст
Аннотация
Об авторах
Леонид Алексеевич Кочкуров
Саратовский государственный технический университет имени Гагарина Ю. А.
ORCID iD: 0000-0002-3360-8878
SPIN-код: 9274-4584
410054, Саратов, ул. Политехническая, 77
Дмитрий Александрович Зимняков
Саратовский государственный технический университет имени Гагарина Ю. А.
ORCID iD: 0000-0002-9787-7903
SPIN-код: 1918-5220
410054, Саратов, ул. Политехническая, 77
Список литературы
- Saberi A. A. Recent advances in percolation theory and its applications. Physics Reports, 2015, vol. 578, pp. 1–32. https://doi.org/10.1016/j.physrep.2015.03.003
- Li M., Liu R.-R., Lü L., Hu M.-B., Xu S., Li Y. Z. Percolation on complex networks: Theory and application. Physics Reports, 2021, vol. 907, pp. 1–68. https://doi.org/10.1016/j.physrep.2020.12.003
- Xu X., Wang J., Lv J.-P., Deng Y. Simultaneous analysis of three-dimensional percolation models. Frontiers of Physics, 2014, vol. 9, pp. 113–119. https://doi.org/10.1007/s11467-013-0403-z
- Liu J., Regenauer-Lieb K. Application of percolation theory to microtomography of structured media: Percolation threshold, critical exponents, and upscaling. Physical Review E, 2011, vol. 83, iss. 1, art. 016106. https://doi.org/10.1103/PhysRevE.83.016106
- Hunt A., Ewing R., Ghanbarian B. Percolation theory for flow in porous media. Cham, Springer, 2014, XXIV+447 p. https://doi.org/10.1007/978-3-319-03771-4
- Rammal R., Tannous C., Tremblay A. M. S. 1/f noise in random resistor networks: Fractals and percolating systems. Physical Review A, 1985, vol. 31, iss. 4, pp. 2662–2671. https://doi.org/10.1103/PhysRevA.31.2662
- Rammal R., Tannous C., Breton P., Tremblay A. -M. S. Flicker (1/ f) noise in percolation networks: A new hierarchy of exponents. Physical Review Letters, 1985, vol. 54, iss. 15, pp. 1718–1721. https://doi.org/10.1103/PhysRevLett.54.1718
- Blumenfeld R., Meir Y., Aharony A., Aharony A., Harris A. B. Resistance fluctuations in randomly diluted networks. Physical Review B, 1987, vol. 35, iss. 7, pp. 3524–3535. https://doi.org/10.1103/PhysRevB.35.3524
- Garfunkel G. A., Alers G. B., Weissman M. B., Mochel J. M., VanHarlingen D. J. Universal-Conductance-Fluctuation 1/f Noise in a Metal-Insulator Composite. Physical Review Letters, 1988, vol. 60, iss. 26, pp. 2773–2776. https://doi.org/10.1103/PhysRevLett.60.2773
- Stephany J. F. Frequency limits of 1/f noise. Journal of Physics: Condensed Matter, 2000, vol. 12, iss. 11, pp. 2469–2483. https://doi.org/10.1088/0953-8984/12/11/313
- Nandi U. N., Mukherjee C. D., Bardhan K. K. 1/f noise in nonlinear inhomogeneous systems. Physical Review B, 1996, vol. 54, iss. 18, pp. 12903–12914. https://doi.org/10.1103/PhysRevB.54.12903
- Zimnyakov D. A., Volchkov S. S., Vasilkov M. Y., Plugin I. A., Varezhnikov A. S., Gorshkov N. V., Ushakov A. V., Tokarev A. S., Tsypin D. V., Vereshagin D. A. Semiconductor-to-insulator transition in interelectrode bridge-like ensembles of anatase nanoparticles under a long-term action of the direct current. Nanomaterials, 2023, vol. 13, iss. 9, art. 1490. https://doi.org/10.3390/nano13091490
- Kochkurov L. A., Volchkov S. S., Vasilkov M. Y., Plugin I. A., Klimova A. A., Zimnyakov D. A. Degradation of conductivity of low-dimensional nanostructured semiconductor layers under long-term dc current flow. Izvestiya of Saratov University. Physics, 2024, vol. 24, iss. 1, pp. 41–51 (in Russian). https://doi.org/10.18500/1817-3020-2024-24-1-41-51, EDN: AUQNBD
- Lust L. M., Kakalios J. Computer simulations of conductance noise in a dynamical percolation resistor network. Physical Review E, 1994, vol. 50, iss. 5, pp. 3431–3435. https://doi.org/10.1103/PhysRevE.50.3431
- Gallyamov S. R., Melchukov S. A. Percolation model of two-phase lattice conductivity: Theory and computer experiment. Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 2010, iss. 4, pp. 112–122 (in Russian). https://doi.org/10.20537/vm100413
- Bunde A., Havlin S., eds. Fractals and disordered systems. Berlin, Springer, 2012, XXII+408 р. https://doi.org/10.1007/978-3-642-84868-1
- Feder J. Fractals. Physics of Solids and Liquids. New York, Springer, 2013. XXVI+284 p. https://doi.org/10.1007/978-1-4899-2124-6
- Herrmann H. J., Hong D. C., Stanley H. E. Backbone and elastic backbone of percolation clusters obtained by the new method of “burning”. Journal of Physics A: Mathematical and General, 1984, vol. 17, iss. 5, pp. L261–L266. https://doi.org/10.1088/0305-4470/17/5/008
Дополнительные файлы


