The asymptotic analysis of free vibrations of a cylindrical shell joined with annular plates

封面

如何引用文章

全文:

详细

Low frequencies and vibration modes of a closed circular cylindrical shell joined with annular plates are obtained by means of asymptotic methods. Two types of vibrations, corresponding to narrow and wide plates, are analyzed. If the width of the ring is sufficiently small, then the vibration mode of the stiffened shell is similar to the mode of the shell without rings. For wide plates joined with a cylindrical shell the vibration mode is localized on the surface of the ring, and the cylindrical shell itself does not actually deform. In both cases the solution of a boundary value problem is searched in the form of the sum of slowly varying functions and edge effect integrals. For narrow plates as a first approximation we obtain a problem about vibrations of the beam supported by springs. For wide plates the problem is reduced to a problem about vibrations of a ring plate.

作者简介

Sergei Filippov

St. Petersburg University

Email: s_b_filippov@mail.ru
ORCID iD: 0000-0002-1312-5705
Scopus 作者 ID: 7006004880
Russia, 199034, St. Petersburg, Universitetskaya nab., 7-9

Anastasiya Kozlova

St. Petersburg University

编辑信件的主要联系方式.
Email: st076954@student.spbu.ru
Russia, 199034, St. Petersburg, Universitetskaya nab., 7-9

参考

  1. Филиппов С. Б. Теория сопряженных и подкрепленных оболочек. Санкт-Петербург : Изд-во Санкт-Петербургского ун-та, 1999. 196 с.
  2. Filippov S. B. Asymptotic approximations for frequencies and vibration modes of cylindrical shell stiffened by annular plates // Analysis of Shells, Plates, and Beams — A State of the Art Report. 2020. P. 123–140. (Springer’s Series Advanced Structured Materials, vol. 123). https://doi.org/10.1007/978-3-030-47491-1_7
  3. Гольденвейзер А. Л., Лидский В. Б., Товстик П. Е. Свободные колебания тонких упругих оболочек. Москва : Наука, 1979. 384 с.
  4. Bauer S. M., Filippov S. B., Smirnov A. L., Tovstik P. E., Vaillancourt R. Asymptotic methods in mechanics of solids. Springer International Publishing, Switzerland, 2015. 325 p. (International Series of Numerical Mathematics, vol. 167).
  5. Filippov S. B. Optimal design of stiffened cylindrical shells based on an asymptotic approach // Technishe Mechanik. 2004. Bd. 24, Heft 3–4. S. 221–230. https://journals.ub.ovgu.de/index.php/techmech/article/view/927
  6. Вибрации в технике / под ред. В. В. Болотина : в 6 т. Т. 1. Москва : Машиностроение, 1978. 352 с.
  7. Тимошенко С. П., Донован Х. Я., Уивер У. Колебания в инженерном деле. Москва : Машиностроение, 1985. 472 с.

补充文件

附件文件
动作
1. JATS XML


Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).