Implementation of the identification and recognition system cognitive behavior of the observed

Capa

Citar

Texto integral

Resumo

This article describes and analyzes the development of a system for identifying and recognizing the cognitive behavior of students to determine interest in facial expressions. The purpose of the study is to find suitable technologies for the implementation of this system. The definition of emotions will allow organizing control over the quality of the educational process, conducting statistics on the cognitive behavior of students during classes, and showing the level of interest of students in the material presented. The identification system will automatically determine and register the time of arrival and departure of students in real time. Based on the joint application of the Viola – Jones method and the nearest neighbors method using histograms of centrally symmetric local binary images, a system for face recognition in a real-time video sequence has been developed. The structure of the project is described and the software is developed in the Python programming language using the Keras open-source library. The developed system consists of two subsystems: an identification system and a cognitive behavior recognition system. The scientific novelty lies in an integrated approach to the development and research of algorithms for real-time face recognition and identification for solving applied problems.

Sobre autores

Oleg Demidenko

Francisk Skorina Gomel State University

ORCID ID: 0000-0002-0601-0758
Scopus Author ID: 6602779227
Researcher ID: AAD-2488-2019
104 Sovetskaya St., Gomel 246028, Belarus

Natallia Aksionova

Francisk Skorina Gomel State University

ORCID ID: 0000-0002-1558-3064
104 Sovetskaya St., Gomel 246028, Belarus

Andrei Varuyeu

Francisk Skorina Gomel State University

ORCID ID: 0000-0003-0235-0875
Scopus Author ID: 57426557700
104 Sovetskaya St., Gomel 246028, Belarus

Bibliografia

  1. Demidenko O. M., Aksionova N. A. Development of a machine vision system for image recognition of design estimates. Nonlinear Phenomena in Complex Systems, 2022, vol. 25, iss. 2, pp. 159–167. https://doi.org/10.33581/1561-4085-2022-25-2-159-167
  2. Badrinarayanan V., Kendall A., Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, vol. 39, iss. 12, pp. 2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615
  3. Viola P., Jones M. Rapid object detection using a boosted cascade of simple features. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2001, vol. 1, pp. 511–518. https://doi.org/10.1109/CVPR.2001.990517
  4. Shapiro L., Stockman G. Computer Vision. London, Pearson, 2006. 752 p.
  5. Aksionova N. A., Demidenko O. M., Voruev A. V. Implementation of a system for determining students’ emotions by their facial expressions. Proceedings of Francisk Skorina Gomel State University. Natural Sciences, 2022, iss. 3 (132), pp. 82–87 (in Russian).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).