Numerical study of the hydrodynamics of supercavitation flow around an underwater body

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The work is devoted to the study of the high-speed flow around an elongated body in water at various depths in the supercavitation regime. The aim of the research is to study the state of the environment around a submerged body and the possible influence of environmental disturbances on the movement of a group of bodies. The mathematical model of a compressible medium was used based on the Navier – Stokes equations. Two-phase, turbulence and phase transition were taken into account using the Mixture model, $k-\epsilon$ equations and Singhal full cavitation model, respectively. In the work, elongated conical bodies with different cavitator diameters and streamlined by a fluid flow at different speeds were considered. The numerical results were compared with the experimental results obtained by launching bodies on a hydroballistic track at the RIAMM TSU. Numerical simulation results showed that the proposed mathematical model can accurately predict the geometric shape and dimensions of the cavity. The numerical results are also in good agreement with the semi-empirical approximation for the cavity shape. Flow calculations show that a shock-wave flow pattern is formed near the body and flow disturbances propagate to a sufficient distance. On a cavitator at the front end of the body the flow is stalled and there is a sharp decrease of pressure to the values of saturated vapor pressure behind the shock wave. The dimensions of the cavity depend on the speed and ambient pressure — a greater flow rate leads to an increase in the size of the cavity. From calculations it follows that in the case of simulating deep-water launching under the same conditions of speed, following the medium pressure increase the volume of the cavity and the area of a disturbances propagation in the medium decreases, which can positively affect the accuracy of moving a group of bodies in a  water.

Авторлар туралы

Konstantin Zhiltsov

National research Tomsk State University

ORCID iD: 0000-0003-4594-9116
SPIN-код: 8679-3704
Russia, 634050, Tomsk, 36, Lenin Ave.

Ilya Tyryshkin

National research Tomsk State University

ORCID iD: 0000-0002-2298-0754
SPIN-код: 9477-8010
Scopus Author ID: 57197734550
Russia, 634050, Tomsk, 36, Lenin Ave.

Aleksander Ischenko

National research Tomsk State University

SPIN-код: 4129-6433
Scopus Author ID: 7102919250
ResearcherId: N-8997-2014
Russia, 634050, Tomsk, 36, Lenin Ave.

Alexey Diachkovskii

National research Tomsk State University

ORCID iD: 0000-0001-8553-6645
SPIN-код: 1073-8519
Scopus Author ID: 57191846448
ResearcherId: D-2019-2018
Russia, 634050, Tomsk, 36, Lenin Ave.

Andrey Chupashev

National research Tomsk State University

SPIN-код: 7192-9069
Scopus Author ID: 56183781300
Russia, 634050, Tomsk, 36, Lenin Ave.

Әдебиет тізімі

  1. Рождественский B. B. Кавитация. Ленинград : Судостроение, 1977. 247 c.
  2. Савченко Ю. Н. Исследование суперкавитационных течений // Прикладна гiдромеханiка. 2007. Т. 9, № 2. С. 150–158.
  3. Hrubes J. D. High-speed imaging of supercavitating underwater projectiles // Experiments in Fluids. 2001. Vol. 30, iss. 1. P. 57–64. https://doi.org/10.1007/s003480000135
  4. Truscott T. T., Epps B. P., Belden J. Water entry of projectiles // Annual Review of Fluid Mechanics. 2014. Vol. 46. P. 355–378. https://doi.org/10.1146/annurev-fluid-011212-140753
  5. Кулагин В. А., Пьяных Т. А. Исследование кавитационных течений средствами математического моделирования // Журнал Сибирского федерального университета. Серия: Техника и Технологии. 2012. Т. 5, № 1. С. 57–62. EDN: OXZAOD
  6. Xulong X., Tao X. Hydrodynamic characteristics of a supercavitating vehicle’s aft body // Ocean Engineering. 2016. Vol. 114. P. 37–46. https://doi.org/10.1016/j.oceaneng.2016.01.012
  7. Saranjam B. Experimental and numerical investigation of an unsteady supercavitating moving body // Ocean Engineering. 2013. Vol. 59. P. 613–626. https://doi.org/10.1016/j.oceaneng.2012.12.021
  8. Qing Mu, Yipin Lv, Kangjian Wang, Tianhong Xiong, Wenjun Yi Numerical simulation on the cavitation flow of high speed oblique water entry of revolution body // Mathematical Problems in Engineering. 2019. Vol. 2019. P. 1–10. https://doi.org/10.1155/2019/8034619
  9. Chunyong Fan, Zengliang Li, Khoo B. C., Mingchao Du. Supercavitation phenomenon research of projectiles passing through density change area // AIP Advances. 2019. Vol. 9, iss. 4. Art. 045303. https://doi.org/10.1063/1.5087625
  10. Van-Tu Nguyen, Warn-Gyu Park. Numerical study of the thermodynamics and supercavitating flow around an underwater high-speed projectile using a fully compressible multiphase flow model // Ocean Engineering. 2022. Vol. 257. Art. 111686. https://doi.org/10.1016/j.oceaneng.2022.111686
  11. Ищенко А. Н., Афанасьева С. А., Буркин В. В., Дьячковский А. С., Чупашев А. В. Исследование взаимного влияния группы ударников при высокоскоростном одновременном входе в воду // Письма в журнал технической физики. 2019. Т. 45, № 20. С. 47–50. https://10.21883/PJTF.2019.20.48395.17950, EDN: LYQMTM
  12. Huang X., Cheng C., Zhang X. Machine learning and numerical investigation on drag reduction of underwater serial multi-projectiles // Defence Technology. 2022. Vol. 18, iss. 2. P. 229–237. https://doi.org/10.1016/j.dt.2020.12.002
  13. Xu C., Khoo B. C. Numerical investigation on free surface effect on the supercavitating flow over a low aspect ratio wedge-shaped hydrofoil // Journal of Hydrodynamics. 2020. Vol. 32, iss. 1. P. 20–30. https://doi.org/10.1007/s42241-020-0003-7
  14. Патанкар С. В. Численное решение задач теплопроводности и конвективного теплообмена при течении в каналах / пер. с англ. Е. В. Калабина под ред. Г. Г. Янькова. Москва : Изд-во МЭИ, 2003. 312 с. EDN: QMIDVJ
  15. Manninen M., Taivassalo M. On the mixture model for multiphase flow. Espoo : Technical Research Centre of Finland, VTT Publications 288, 1996. 67 p.
  16. Launder B.E., Spalding D. B. Lectures in mathematical model of turbulence. London : Academic Press, 1972. 176 p.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML


Creative Commons License
Бұл мақала лицензия бойынша қолжетімді Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).