Hopfian additive groups of rings
- Authors: Kaigorodov E.V.1
-
Affiliations:
- Gorno-Altaisk State University
- Issue: Vol 25, No 1 (2025)
- Pages: 15-23
- Section: Mathematics
- URL: https://ogarev-online.ru/1816-9791/article/view/352326
- DOI: https://doi.org/10.18500/1816-9791-2025-25-1-15-23
- EDN: https://elibrary.ru/CCBEOV
- ID: 352326
Cite item
Full Text
Abstract
A group is called Hopfian if it is not isomorphic to any of its proper factor groups, or, equivalently, any of its epimorphisms on itself is an isomorphism, i.e., an automorphism. This property was first proved by the Swiss mathematician H. Hopf for fundamental groups of Riemann surfaces. The results of the present paper concentrate around the problem of investigating general properties of Hopfian abelian groups and describing Hopfian groups in certain classes of abelian groups. Among the questions relating to Hopfian abelian groups, the study of the hopficity property in such a specific class of abelian groups as additive groups of rings occupies an important place. Additive groups of rings are one of the directions of research connecting the theory of abelian groups with the theory of rings. With regards to the methods of investigation and the nature of the results, this newly emerged direction, which appeared in the middle of the last century, is traditionally referred to the theory of abelian groups. When considering additive groups of particular classes of rings, some interesting examples of Hopfian abelian groups arise. The paper studies the hopficity in additive groups of $E$-rings (also called $E$-groups) and artinian rings. The work, in particular, proves that the additive group of an $E$-ring is Hopfian, and also gives a full description of how Hopfian additive groups of artinian rings are structured.
Keywords
About the authors
Evgeniy Vladimirovich Kaigorodov
Gorno-Altaisk State University
ORCID iD: 0000-0001-5172-5915
SPIN-code: 1353-4138
1 Lenkin St., Gorno-Altaisk 649000, Altai Republic, Russia
References
- Курош А. Г. Теория групп. Москва : Физматлит, 2011. 808 с. EDN: RBBEOR
- Bao Yan, Ziqi Tan, Shijie Wei, Haocong Jiang, Weilong Wang, Hong Wang, Lan Luo, Qianheng Duan, Yiting Liu, Wenhao Shi, Yangyang Fei, Xiangdong Meng, Yu Han, Zheng Shan, Jiachen Chen, Xuhao Zhu, Chuanyu Zhang, Feitong Jin, Hekang Li, Chao Song, Zhen Wang, Zhi Ma, H. Wang, Gui-Lu Long. Factoring integers with sublinear resources on a superconducting quantum processor // ArXiv preprint arXiv:2212.12372. 2022. URL: https://arxiv.org/pdf/2212.12372.pdf (дата обращения: 14.01.2024).
- Гретцер Г. Общая теория решеток : пер. с англ. / под ред. Д. М. Смирнова. Москва : Мир, 1981. 456 с.
- Baumslag G. Hopficity and Abelian groups // Topics in Abelian groups : Proceedings of the New Mexico Symposium on Abelian Groups. Scott-Foresman-Chicago : New Mexico State University, 1962. P. 331–335.
- Baumslag G. On Abelian Hopfian groups. I // Mathematische Zeitschrift. 1962. Vol. 78, iss. 1. P. 53–54. https://doi.org/10.1007/BF01195151
- Baumslag G. Products of Abelian Hopfian groups // Journal of the Australian Mathematical Society. 1968. Vol. 8. P. 322–326. https://doi.org/10.1017/S1446788700005383
- Corner A. L. S. Three examples on Hopficity in torsion-free Abelian groups // Acta Mathematica Academiae Scientiarum Hungaricae. 1965. Vol. 16, iss. 3–4. P. 303–310. https://doi.org/10.1007/BF01904838
- Irwin J. M., Takashi J. A quasi-decomposable Abelian group without proper isomorphic quotient groups and proper isomorphic subgroups // Pacific Journal of Mathematics. 1969. Vol. 29, iss. 1. P. 151–160. https://doi.org/10.2140/pjm.1969.29.151
- Takashi J., Irwin J. M. A quasi-decomposable Abelian group without proper isomorphic quotient groups and proper isomorphic subgroups, 2 // Journal of Faculty of Science, Hokkaido University. 1969. Vol. 20, iss. 4. P. 194–203. https://doi.org/10.14492/hokmj/1530064871
- Goldsmith B., Gong K. On super and hereditarily Hopfian and co-Hopfian Abelian groups // Archiv der Mathematik. 2012. Vol. 99, iss. 1. P. 1–8. https://doi.org/10.1007/s00013-012-0402-2
- Goldsmith B., Gong K. On adjoint entropy of Abelian groups // Communications in Algebra. 2012. Vol. 40. P. 972–987. https://doi.org/10.1080/00927872.2010.543447
- Goldsmith B., Gong K. A note on Hopfian and co-Hopfian Abelian groups // Contemporary Mathematics. 2012. Vol. 576. P. 129–136. https://doi.org/10.1090/conm/576/11356
- Goldsmith B., Gong K. On some generalizations of Hopfian and co-Hopfian Abelian groups // Acta Mathematica Hungarica. 2013. Vol. 139, iss. 4. P. 393–398. https://doi.org/10.1007/s10474-012-0290-8
- Paolini G., Shelah S. On the existence of uncountable Hopfian and co-Hopfian Abelian groups // Israel Journal of Mathematics. 2023. Vol. 257, iss. 2. P. 533–560. https://doi.org/10.1007/s11856-023-2534-4
- Кайгородов Е. В. Хопфовы алгебраически компактные абелевы группы // Алгебра и логика. 2013. Т. 52, вып. 6. С. 667–675. EDN: RXKLUX
- Кайгородов Е. В. О некоторых классах хопфовых абелевых групп // Фундаментальная и прикладная математика. 2012. Т. 17, вып. 8. С. 59–61. EDN: TWUZML
- Fuchs L. Abelian Groups. Cham : Springer, 2015. 747 p. https://doi.org/10.1007/978-3-319-19422-6
- Крылов П. А., Михалев А. В., Туганбаев А. А. Абелевы группы и их кольца эндоморфизмов. Москва : Факториал Пресс, 2006. 512 с. EDN: QJPUCH
- Feigelstock S. Additive groups of rings. Boston ; London ; Melbourne : Pitman Advanced Publishing Program, 1983. 113 p.
- Schultz P. The endomorphism ring of the additive group of a ring // Journal of the Australian Mathematical Society. 1973. Vol. 15, iss. 1. P. 60–69. https://doi.org/10.1017/S1446788700012763
- Крылов П. А., Туганбаев А. А., Царев А. В. E-группы и E-кольца // Итоги науки и техники. Серия: Современная математика и ее приложения. Тематические обзоры. 2019. Т. 159. C. 111–132.
- Гришин А. В., Царев А. В. E-замкнутые группы и модули // Фундаментальная и прикладная математика. 2012. Т. 17, вып. 2. С. 97–106. EDN: TWUYLX
Supplementary files


