Устойчивость трехслойных дифференциально-разностных схем с весами в пространстве суммируемых функций с носителями в сетеподобной области

Обложка

Цитировать

Полный текст

Аннотация

Работа является естественным продолжением ранних исследований авторов при анализе условий слабой разрешимости одномерных начально-краевых задач с изменяющейся на графе (сети) пространственной переменной  в направлении увеличения размерности $n$ ($n>1$) сетеподобной области изменения этой переменной. Первые результаты в указанном направлении (при $n=3$) были получены одним из авторов для линеаризованной системы Навье–Стокса, в дальнейшем — для существенно более сложной нелинейной системы Навье–Стокса. При этом анализ проводился классическим путем, используя априорные оценки норм слабых решений в соболевских пространствах функций. В данном исследовании (при произвольном $n>1$) предлагается другой подход получения условий слабой разрешимости линейных начально-краевых задач — редукция исходной задачи к дифференциально-разностной системе, идея которой восходит к методу Е. Роте полудискретизации начально-краевой задачи по временной переменной. Рассматриваются дифференциально-разностная система уравнений с весовыми параметрами и соответствующая ей  трехслойная дифференциально-разностная схема (множество схем). Полученная система является аналогом начально-краевой задачи для уравнения параболического типа с пространственной переменной, изменяющейся в сетеподобной области $n$-мерного евклидового пространства. Основная цель — установление области изменения весовых параметров, гарантирующей устойчивость дифференциально-разностной схемы (непрерывность по исходным данным задачи), получение оценок операторных норм слабых решений схемы, построение последовательности решений дифференциально-разностной системы, слабо компактной в пространстве ее состояний. Последнее является важным элементом при использовании численных методов анализа широкого класса прикладных многомерных задач и построения вычислительных алгоритмов для отыскания приближений их решений. Результаты применимы в прикладных задачах оптимизации, возникающих при моделировании сетевых процессов переноса сплошных сред с помощью формализмов дифференциально-разностных систем.

Об авторах

Ван Нгуен Хоанг

Воронежский государственный университет

ORCID iD: 0000-0001-6970-2770
Россия, 394006, г. Воронеж, Университетская пл., 1

Вячеслав Васильевич Провоторов

Воронежский государственный университет

ORCID iD: 0000-0001-8761-7174
Scopus Author ID: 24451043200
Россия, 394006, г. Воронеж, Университетская пл., 1

Список литературы

  1. Provotorov V. V., Sergeev S. M., Hoang V. N. Point control of a differential-difference system with distributed parameters on the graph // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2021. Т. 17, вып. 3. С. 277–286. https://doi.org/10.21638/11701/spbu10.2021.305
  2. Zhabko А. P., Provotorov V. V., Shindyapin A. I. Optimal control of a differential-difference parabolic system with distributed parameters on the graph // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2021. Т. 17, вып. 4. С. 433–448. https://doi.org/10.21638/11701/spbu10.2021.411
  3. Хоанг В. Н., Провоторов В. В. Устойчивость трехслойной симметричной дифференциально-разностной схемы в классе суммируемых на сетеподобной области функций // Вестник российских университетов. Математика. 2022. Т. 27, вып. 137. С. 80–94. https://doi.org/10.20310/2686-9667-2022-27-137-80-94
  4. Rothe E. Uber die Warmeleitungsgleichung mit nichtkonstanten Koeffizienten im raumlichen Falle // Mathematische Annalen. 1931. Vol. 104. P. 355–362. https://doi.org/10.1007/BF01457943
  5. Самарский А. А. Теория разностных схем. Москва : Наука, 1977. 655 с.
  6. Doubova A., Fernandez-Cara E., Gonzalez-Burgos M. Controllability results for linear viscoelastic fluids of the Maxwell and Jeffreys kinds // Comptes Rendus de l’Academie des Sciences – Series I – Mathematics. 2000. Vol. 331, iss. 7. P. 537–542. https://doi.org/10.1016/S0764-4442(00)01662-1
  7. Boldrini J. L., Doubova A., Fernandez-Cara E., Gonzalez-Burgos M. Some controllability results for linear viscoelastic fluids // SIAM Journal on Control and Optimization. 2012. Vol. 50, iss. 2. P. 900–924. https://doi.org/10.1137/100813592
  8. Renardy M. On control of shear flow of an upper convected Maxwell fluid // Zeitschrift fur Angewandte Mathematik und Mechanik. 2007. Vol. 87. P. 213–218. https://doi.org/10.1002/zamm.200610313
  9. Wachsmuth D., Roubicek T. Optimal control of planar flow of incompressible non-Newtonian fluids // Zeitschrift fur Analysis und ihre Anwendung. 2010. Vol. 29. P. 351–376. https://doi.org/10.4171/ZAA/1412
  10. Debbouche A., Nieto J. J. Sobolev type fractional abstract evolution equations with nonlocal conditions and optimal multi-controls // Applied Mathematics and Computation. 2014. Vol. 245. P. 74–85. https://doi.org/10.1016/j.amc.2014.07.073
  11. Baranovskii E. S. Steady flows of an Oldroyd fluid with threshold slip // Communications on Pure and Applied Analysis. 2019. Vol. 18, iss. 2. P. 735–750. https://doi.org/10.3934/cpaa.2019036
  12. Baranovskii E. S., Artemov M. A. Solvability of the Boussinesq approximation for water polymer solutions // Mathematics. 2019. Vol. 7, iss. 7. Art. 611. https://doi.org/10.3390/math7070611
  13. Artemov M. A., Baranovskii E. S. Global existence results for Oldroyd fluids with wall slip // Acta Applicandae Mathematicae. 2017. Vol. 147, iss. 1. P. 197–210. https://doi.org/10.1007/s10440-016-0076-z

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».