Removal of non-stoichiometric aspartic acid from an aqueous dispersion of chitosan aspartate nanoparticles

Capa

Citar

Texto integral

Resumo

In the traditional method of removing excess acid used to obtain the salt form of chitosan, not only a reaction with neutralizing bases proceeds, but also partial deprotonation of macrochains. Since charged amino groups are responsible for the biological activity of the aminopolysaccharide, it seems important to develop methods for optimizing the acid–base composition of a chitosan-containing system without proton elimination. The paper presents the results of our study on the removal of non-stoichiometric aspartic acid from an aqueous dispersion of chitosan aspartate nanoparticles obtained by in situ self-assembly during counterion association on charged polymer chains and stabilized by a polysiloxane shell coating using isohydric and isothermal crystallization approaches. It is shown that a temperature decrease in the range of 50–4°C in combination with water distillation by 50–85% leads to supersaturation of the nanodispersion and crystallization of the poorly soluble component of the dispersion medium with precipitation. The infl uence of the acid/polymer molar ratio (1.3–1.7 mol/mol of NH2 ) in the target substance of the dispersed phase, the cooling rate (10 and 30°C/h) and the dispersion concentration degree (50–85%), as well as the temperature (22±2 and 4°C) and holding time (1–200 days) on the morphostructure, chemical composition, crystalline ordering and quantitative yield of the solid phase has been estimated. The correspondence of the air-dry form of the isolated precipitate to crystals of the zwitterionic form of aspartic acid has been proven by IR spectroscopy, X-ray structural analysis, dialysis, potentiometry and gravimetry. It has been found that the most optimal option for preparative removal of non-stoichiometric double bipolar ions is the concentration of nanodispersion by 85% followed by supercooling from 50 down to 4°C at a rate of 10°C/h. The developed approach to combining isohydric and isothermal crystallization of non-stoichiometric aspartic acid has been successfully tested on moderately concentrated solutions of the complex salt of chitosan hydrochloride–aspartate.

Sobre autores

Error Error

Saratov State University

ORCID ID: 0009-0003-7575-574X
83, Astrakhanskaya str., Saratov, 410012, Russia

Olga Ushakova

Saratov State University

ORCID ID: 0009-0005-6189-4567
Código SPIN: 9417-4361
Scopus Author ID: 58954086400
Researcher ID: LVA-1221-2024
83, Astrakhanskaya str., Saratov, 410012, Russia

Xenia Shipenok

Saratov State University

ORCID ID: 0000-0002-9733-751X
83, Astrakhanskaya str., Saratov, 410012, Russia

Anna Shipovskaya

Saratov State University

83, Astrakhanskaya str., Saratov, 410012, Russia

Bibliografia

  1. Lewandowska K., Szulc M. Rheological and film-forming properties of chitosan composites // Int. J. Mol. Sci. 2022. Vol. 23, № 15. Art. 8763. https://doi.org/10.3390/ijms23158763
  2. Morin-Crini N., Lichtfouse E., Torri G., Crini G. Fundamentals and applications of chitosan // Sustainable Agriculture Reviews. 2019. Vol. 35. P. 49–123. https://doi.org/10.1007/978-3-030-16538-3_2
  3. Михайлов Г. П., Тучков С. В., Лазарев В. В., Кулиш Е. И. Комплексообразование хитозана с уксусной кислотой по данным Фурье-спектроскопии комбинационного рассеяния света // Журнал физической химии. 2014. Т. 88, № 6. С. 973–978. https://doi.org/10.7868/S0044453714060193
  4. Кузина Л. Г., Мурзагильдина А. С., Чернова В. В., Кулиш Е. И. Влияние степени протонирования хитозана на некоторые его свойства // Вестник Башкирского университета. 2012. Т. 17, № 2. С. 902–905.
  5. Nicu R., Bobu E., Desbrieres J. Chitosan as cationic polyelectrolyte in wet-end papermaking systems // Cellul. Chem. Technol. 2011. Vol. 45, № 1. P. 105–111. URL: https://www.researchgate.net/publication/249999122_Chitosan_as_cationic_polyelectrolyte_in_wet-end_papermaking_systems (дата обращения: 02.03.2025).
  6. Lugovitskaya T. N., Shipovskaya A. B., Shmakov S. L., Shipenok X. M. Formation, structure, properties of chitosan aspartate and metastable state of its solutions for obtaining nanoparticles // Carbohydrate Polymers. 2022. Vol. 277. ID: 118773. https://doi.org/10.1016/j.carbpol.2021.118773
  7. Ашуров Н. Ш., Югай С. М., Шахобутдинов С. Ш., Кулумбетов А. С., Атаханов А. А. Физико-химические исследования структуры наночастиц хитозана и аскорбат хитозана // Известия Академии наук. Серия химическая. 2022. №2. С. 227–231.
  8. Kumaraswamy R. V., Kumari S., Choudhary R. C., Sharma S. S., Pal A., Raliya R., Biswas P., Saharan V. Salicylic acid functionalized chitosan nanoparticle: A sustainable biostimulant for plant // Int. J. Biol. Macromol. 2018. Vol. 123. P. 1–35. https://doi.org/10.1016/j.ijbiomac.2018.10.202
  9. Malinkina O. N., Shmakov S. L., Shipovskaya A. B. Structure, the energy, sorption and biological properties of chiral salts of chitosan with L- and D-ascorbic acid // Int. J. Biol. Macromol. 2024. Vol. 257, part 2. ID: 128731. https://doi.org/10.1016/j.ijbiomac.2023.128731
  10. Soares L. de S., Tonole B., Milião G. L., Teixeira A. V. N. de C., Coimbra J. S. dos R., Oliveira E. B. Aqueous solutions of glycolic, propionic, or lactic acid in substitution of acetic acid to prepare chitosan dispersions: A study based on rheological and physicochemical properties // J. Food Sci. Technol. 2021. Vol. 58, № 5. P. 1797–1807. https://doi.org/10.1007/S13197-020-04691-0
  11. Шипенок К. М., Луговицкая Т. Н., Шиповская А. Б. Процессы структурообразования при получении наночастиц L- и D-аспарагината хитозана // Журнал физической химии. 2024. Т. 98, № 8. С. 133–141. URL: https://www.elibrary.ru/item.asp?edn=PHYLHZ
  12. Amorim M. L., Ferreira G. M. D., Soares L. de S., Soares W. A. dos S., Ramos A. M., Coimbra J. S. dos R., Silva L. H. M. da, Oliveira E. B. de. Physicochemical aspects of chitosan dispersibility in acidic aqueous media: Effects of the food acid counter-anion // Food Biophysics. 2016. Vol. 11, № 4. P. 388–399. https://doi.org/10.1007/S11483-016-9453-4
  13. Ing L. Y., Zin N. M., Sarwar A., Katas H. Antifungal activity of chitosan nanoparticles and correlation with their physical properties // Int. J. Biomater. 2012. Vol. 2012. P. 1–9. ID: 632698. https://doi.org/10.1155/2012/632698
  14. Pillai C. K. S., Paul W., Sharma C. P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation // Progress in Polymer Science. 2009. Vol. 34. P. 641–678. https://doi.org/10.1016/j.progpolymsci.2009.04.001
  15. Бочек А. М., Забивалова Н. М., Попова Е. Н., Лебедева М. Ф., Лаврентьев В. К., Юдин В. Е. Влияние природы кислоты на свойства растворов смесей метилцеллюлозы с хитозаном и композиционных пленок на их основе // Высокомолекулярные соединения (серия А). 2021. T. 63, № 1. С. 66–80. https://doi.org/10.31857/S2308112021010028
  16. Зоткин М. А., Вихорева Г. А., Кечекьян А. С. Термомодификация хитозановых пленок в форме солей с различными кислотами // Высокомолекулярные соединения. Серия Б. 2004. Т. 46, № 2. С. 359–363.
  17. Cano-Vicent A., Tuñón-Molina A., Martí M., Serrano-Aroca Á. Biocompatible chitosan films containing acetic acid manifested potent antiviral activity against enveloped and non-enveloped viruses // Int. J. Mol. Sci. 2023. Vol. 24, № 15. Art. 12028. https://doi.org/10.3390/ijms241512028
  18. Poznanski P., Hameed A., Orczyk W. Chitosan and chitosan nanoparticles: parameters enhancing antifungal activity // Molecules. 2023. Vol. 28, № 7. Art. 2996. https://doi.org/10.3390/molecules28072996
  19. Omogbai B. A., Ikenebomeh M. J., Obazenu E. I., Imoni A. A. Changes in pH affects bioactivity of chitosans from Callinectes sapidus // J. Appl. Sci. Environ. Manage. 2019 Vol. 23, № 3. P. 411–415. https://doi.org/10.4314/JASEM.V23I3.7
  20. Jung J., Cavender G., Zhao Y. The contribution of acidulant to the antibacterial activity of acid soluble α- and β-chitosan solutions and their films // Appl. Microbiol. Biotechnol. 2014. Vol. 98, № 1. P. 425–435. https://doi.org/10.1007/S00253-013-5334-7
  21. Актуганов Г. Э., Сафина В. Р., Галимзянова Н. Ф., Кузьмина Л. Ю., Гильванова Е. А., Бойко Т. Ф., Мелентьев А. И. Устойчивость к хитозану бактерий и микромицетов, различающихся по способности к продукции внеклеточных хитиназ и хитозаназ // Микробиология. 2018. Т. 87, № 5. С. 599–609. https://doi.org/10.1134/S0026365618050026
  22. Lemma S. M., Bossard F., Rinaudo M. Preparation of pure and stable chitosan nanofibers by electrospinning in the presence of poly(ethylene oxide) // Int. J. Mol. Sci. 2016. Vol. 17, № 11. Art. 1790. https://doi.org/10.3390/ijms17111790
  23. Qin C., Li H., Xiao Q., Liu Y., Zhu J., Du Y. Water-solubility of chitosan and its antimicrobial activity // Carbohydrate Polymers. 2006. Vol. 63, № 3. P. 367–374. https://doi.org/10.1016/j.carbpol.2005.09.023
  24. Shmakov S. L., Babicheva T. S., Kurochkina V. A., Lugovitskaya T. N., Shipovskaya A. B. Structural and morphological features of anisotropic chitosan hydrogels obtained by ion-induced neutralization in a triethanolamine medium // Gels. 2023. Vol. 9, № 11. ID: 876. https://doi.org/10.3390/gels9110876
  25. Shipenok X. M., Mazhikenova A. M., Glukhovskoy E. G., Shipovskaya A. B. Phase separation of l-menthol an aqueous dispersion of biologically active nanoparticles of chitosan L- and D-aspartate // J. of Biomedical Photonics & Eng. 2024. Vol. 10, № 4. P. 040316-1‒ 040316-7. https://doi.org/10.18287/JBPE24.10.040316
  26. Shipovskaya A. B., Ushakova O. S., Volchkov S. S., Shipenok X. M., Shmakov S. L., Gegel N. O., Burov A. M. Chiral nanostructured glycerohydrogel sol–gel plates of chitosan L- and D-aspartate: Supramolecular ordering and optical properties // Gels. 2024. Vol. 10, № 7. ID: 427. https://doi.org/10.3390/gels10070427
  27. Шиповская А. Б., Луговицкая Т. Н., Зудина И. В. Биоцидная активность наночастиц аспарагината хитозана // Микробиология. 2023. Т. 92, № 1. С. 68–76. https://doi.org/10.31857/S0026365622600547
  28. Луговицкая Т. Н., Шиповская А. Б. Физико-химические свойства водных растворов L-аспарагиновой кислоты с добавкой хитозана // Журнал общей химии. 2017. Т. 87, № 4. С. 650–656.
  29. Шадрина Е. В., Малинкина О. Н., Хонина Т. Г., Шиповская А. Б., Фомина В. И., Ларченко Е. Ю., Попова Н. А., Зырянова И. Г., Ларионов Л. П. Исследование процесса образования и фармакологической активности кремнийхитозансодержащих глицерогидрогелей, полученных методом биомиметической минерализации // Известия Академии наук. Серия химич. 2015. Т. 64, № 7. С. 1633–1639.
  30. Логинова Е. С., Никольский В. М. Биоразлагаемые комплексоны. влияние оптической изомерии на физико-химические свойства // Химическая физика. 2017. Т. 36, № 8. С. 94–100.
  31. Lee T., Lin Y. K. The origin of life and the crystallization of aspartic acid in water // Crystal Growth & Design. 2010. Vol. 10, iss. 4. P. 1652–1660.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».