Mathematical Model of Deformation of an Orthotropic Shell Under Blast Loading

Cover Page

Cite item

Abstract

This paper proposes a mathematical model of the deformation of a thin-walled shell structure under dynamic loading, specifically, blast loading. To account for the damping of the resulting vibrations, the author’s previously proposed model was modified by adding a Rayleigh dissipation function to the Euler - Lagrange equations. The mathematical model also accounts for geometric nonlinearity, transverse shear, and material orthotropy. The software implementation performed in Maple. To demonstrate the applicability of the developed model, examples of calculations of shallow doubly curved shells under blast loading of varying intensities and with different damping coefficients in the Rayleigh dissipation function are provided.

About the authors

Alexey A. Semenov

Saint Petersburg State University of Architecture and Civil Engineering

Author for correspondence.
Email: sw.semenov@gmail.com
ORCID iD: 0000-0001-9490-7364
SPIN-code: 9057-9882

Doctor of Technical Sciences, Professor of the Department of Information Systems and Technologies

4, 2-nd Krasnoarmeiskaja St, St. Petersburg, 190005, Russian Federation

References

  1. Karpov V.V., Kobelev E.A., Maslennikov A.M., Panin A.N. Ritz Method in the Discrete Approximation of Displacements for Slab Calculation. Architecture and Engineering. 2023;8(4):57-67. http://doi.org/10.23968/2500-0055-2023-8-4-57-67 EDN: FTPEME
  2. Korovaytseva E.A. Parameter Differentiation Method in Solution of Axisymmetric Soft Shells Stationary Dynamics Nonlinear Problems. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences. 2021;25(3):556-570. (In Russ.) http://doi.org/10.14498/vsgtu1855 EDN: UKLUQJ
  3. Raghib R., Naciri I., Khalfi H., Elmaimouni L., Yu J., Bybi A., Sahal M. Free Vibration Modeling in a Functionally Graded Hollow Cylinder Using the Legendre Polynomial Approach. Architecture and Engineering. 2023;8(4):82-98. http://doi.org/10.23968/2500-0055-2023-8-4-82-98 EDN: AJNBMP
  4. Razov I.O. Parametric Vibrations and Dynamic Stability Of Homogeneous And Inhomogeneous Toroidal Shells in Elastic Medium. Bulletin of Civil Engineers. 2025;(3):74-83. (In Russ.) http://doi.org/10.23968/1999-5571-2025-22-3-74-83 EDN: EZXRPQ
  5. Eshmatov B., Abdikarimov R., Amabili M., Vatin N. Nonlinear vibrations and dynamic stability of viscoelastic anisotropic fiber reinforced plates. Magazine of Civil Engineering. 2023;118(1):11811. http://doi.org/10.34910/MCE.118.11 EDN: POZQZX
  6. Detina E.P. Numerical model of vibration damping of beam elements of structures made of structurally complex materials based on the principles of non-local mechanics : diss. Cand. Tech. Sci., Moscow: MGSU, 2024. (In Russ.)
  7. Sidorov V., Shitikova M., Badina E., Detina E. Review of Nonlocal-in-Time Damping Models in the Dynamics of Structures. Axioms. 2023;12(7):676. http://doi.org/10.3390/axioms12070676 EDN: DNTVCF
  8. Nguyen T.P., Tran M.T. Response of Vertical Wall Structures under Blast Loading by Dynamic Analysis. Procedia Engineering. 2011;14:3308-3316. http://doi.org/10.1016/j.proeng.2011.07.418
  9. Do N.-T., Le P.B., Tran T.T., Pham Q.H. Nonlinear transient analysis of functionally graded sandwich spherical shells subjected to blast loading in the thermal environment. Case Studies in Thermal Engineering. 2023;52:103765. http://doi.org/10.1016/j.csite.2023.103765 EDN: RNSRMC
  10. Tu P.H., Van Ke T., Trai V.K., Hoai L. An isogeometric analysis approach for dynamic response of doubly-curved magneto electro elastic composite shallow shell subjected to blast loading. Defence Technology. 2024;41:159-180. http://doi.org/10.1016/j.dt.2024.06.005 EDN: EFGQML
  11. Zhao Z., Hou H., Li D., Wu X., Li Y., Chen Z., Wu L. Investigation on dynamic response of liquid-filled cylindrical shell structures under the action of combined blast and fragments loading. Defence Technology. 2025;49:334-354. http://doi.org/10.1016/j.dt.2025.03.007
  12. Godoy L.A., Ameijeiras M.P. Plastic buckling of oil storage tanks under blast loads. Structures. 2023;53:361-372. http://doi.org/10.1016/j.istruc.2023.04.057 EDN: YXCDOO
  13. Volodin G.T., Novikov A.S. In Geonetrically Nonlinear Problem of the Breaking of the Shell Designs Explosion. Izvestiya Tula State University. 2014;(3):94-103. (In Russ.) EDN: SIKKUX
  14. Hackl K., Svoboda J., Fischer F.D. On the coupling of Hamilton’s principle and thermodynamic extremal principles. Journal of the Mechanics and Physics of Solids. 2024;187:105633. http://doi.org/10.1016/j.jmps.2024.105633 EDN: QRZDUS
  15. Leech J.W. Classical Mechanics. 2nd. Dordrecht: Springer Netherlands, 1965. http://doi.org/10.1007/978-94-010-9169-5
  16. Kim J., Dargush G.F., Ju Y.-K. Extended framework of Hamilton’s principle for continuum dynamics. International Journal of Solids and Structures. 2013;50(20-21):3418-3429. http://doi.org/10.1016/j.ijsolstr.2013.06.015
  17. Yang Q., Stainier L., Ortiz M. A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids. Journal of the Mechanics and Physics of Solids. 2006;54(2):401-424. http://doi.org/10.1016/j.jmps.2005.08.010 EDN: JFRWPW
  18. Vujanović B.D., Jones S.E. Variational methods in nonconservative phenomena: Mathematics in science and engineering. Elsevier Publ.; 1989. http://doi.org/10.1016/S0076-5392(08)X6103-X
  19. Bui T.T., Vu M.D., Pham N.N., Cao V.D., Vu H.N. Nonlinear thermo-mechanical dynamic buckling and vibration of FG-GPLRC circular plates and shallow spherical shells resting on the nonlinear viscoelastic foundation. Archive of Applied Mechanics. 2024;94:3715-3729. http://doi.org/10.1007/s00419-024-02691-6 EDN: QSZFWZ
  20. Roy S., Bhadra S. Study of nonlinear dissipative pulse propagation under the combined effect of two-photon absorption and gain dispersion: A variational approach involving Rayleigh’s dissipation. Physica D: Nonlinear Phenomena. 2007;232(2):103-107. http://doi.org/10.1016/j.physd.2007.06.002
  21. Scaife B.K.P. On the Rayleigh dissipation function for dielectric media. Journal of Molecular Liquids. 1989;43:101-107. http://doi.org/10.1016/0167-7322(89)80010-8
  22. Lemos̀ N.A. Remark on Rayleigh’s dissipation function. American Journal of Physics. 1991;59(7):660-661. http://doi.org/10.1119/1.16791
  23. Podio-Guidugli P., Virga E.G. Analytical Thermodynamics. Journal of Elasticity. 2023;153(4-5):787-812. http:// doi.org/10.1007/s10659-023-09997-6 EDN: UYQNIT
  24. Pinho F.A.X.C., Amabili M., Del Prado Z.J.G.N., Da Silva F.M.A. Nonlinear forced vibration analysis of doubly curved shells via the parameterization method for invariant manifold. Nonlinear Dynamics. 2024;112(23):20677-20701. http://doi.org/10.1007/s11071-024-10135-7 EDN: TQEXRH
  25. Touzé C., Amabili M., Thomas O. Reduced-order models for large-amplitude vibrations of shells including in-plane inertia. Computer Methods in Applied Mechanics and Engineering. 2008;197(21-24):2030-2045. http://doi.org/ 10.1016/j.cma.2008.01.002 EDN: WOFWQZ
  26. Amabili M. A comparison of shell theories for large-amplitude vibrations of circular cylindrical shells: Lagrangian approach. Journal of Sound and Vibration. 2003;264(5):1091-1125. http://doi.org/10.1016/S0022-460X(02)01385-8 EDN: XQDOKX
  27. Li H., Zeyu Zou, Wu H., Zhao J., Sun H., Sun W., Wang Q., Wang X. Theoretical and experimental investigations of vibration and damping behaviors of carbon fiber-reinforced composite thin shells with partial bolt looseness constraints. European Journal of Mechanics - A/Solids. 2023;97:104839. http://doi.org/10.1016/j.euromechsol.2022.104839 EDN: AQGPXM
  28. Li H., Wu H., Zhang T., Wen B., Guan Z. A nonlinear dynamic model of fiber-reinforced composite thin plate with temperature dependence in thermal environment. Composites Part B: Engineering. 2019;162:206-218. http://doi.org/ 10.1016/j.compositesb.2018.10.070
  29. Maheri M.R., Adams R.D. Modal Vibration Damping of Anisotropic FRP Laminates Using the Rayleigh - Ritz Energy Minimization Scheme. Journal of Sound and Vibration. 2003;259(1):17-29. http://doi.org/10.1006/jsvi.2002.5151 EDN: BCVKJB
  30. Zinoviev P.A., Ermakov J.N. Energy dissipation in composite materials. Lancaster: Technomic Publ.; 1994.
  31. Zinov’ev P.A., Smerdov A.A., Kulish G.G. Experimental investigation of elastodissipative characteristics of carbon-fiber-reinforced plastics. Mechanics of Composite Materials. 2003;39(5):393-398. http://doi.org/10.1023/B:MOCM.0000003289. 12297.84 EDN: LIEDXP
  32. Semenov A.A. Dynamic response of doubly-curved shallow shells to periodic external action. Structural Mechanics of Engineering Constructions and Buildings. 2024;20(5):433-440. (In Russ.) http://doi.org/10.22363/1815-5235-2024-20-5-433-440 EDN: CQAEAZ
  33. Semenov A.A. Simulation of Deformation of Thin-Walled Shell Structures under Dynamic Loads of Various Types. Bulletin of Civil Engineers. 2024;(5):41-48. (In Russ.) http://doi.org/10.23968/1999-5571-2024-21-5-41-48 EDN: STVEJW

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).