Numerical Simulation of the Restoring Effect from Post-Stress in the Slab of a Cast-in-Situ Reinforced Concrete Frame

Capa

Citar

Texto integral

Resumo

A technique has been developed for finite element modeling of reinforcement of a cast-in-situ floor slab of a repeating fragment of a cast-in-situ frame with pre-stressed cables without adhesion to concrete. The analysis of the stress-strain state of the fragment, taking into account post-stress, is performed in linearly elastic setting. Three-dimensional plate and beam finite elements of the ANSYS Mechanical computational software were used to assemble the studied frame structure. The proposed concept of modeling the restoring force from a prestressed cable to concrete is based on the following sequence of steps: first, using truss and combined finite elements of the ANSYS Mechanical software, the plane problem of determining vertical and horizontal reactions caused by cable tension is solved, then spline interpolation of the obtained values of vertical reactions for setting the appropriate nodal forces on the slab elements is performed. The numerical simulation of the resulting restoring effect from the post-stress created in the floor slab is implemented using two-dimensional interpolation of the displacement distributions from the pre-stress according to two specified schemes onto an auxiliary regular finite element grid with subsequent superposition. The calculation results were compared using the proposed approach and methodology of the A.A. Gvozdev Scientific Research, Design and Technological Institute of Concrete (NIIZHB).

Sobre autores

Peter Gaidzhurov

Don State Technical University

Autor responsável pela correspondência
Email: gpp-161@yandex.ru
ORCID ID: 0000-0003-3913-9694
Código SPIN: 6812-9718

Advisor of the Russian Academy of Architecture and Construction Sciences, Doctor of Technical Sciences, Professor of the Department of Structural Mechanics and Theory of Structures

1 Gagarin Sq., Rostov-on-Don, 344003, Russian Federation

Nina Savelyeva

Don State Technical University

Email: ninasav86@mail.ru
ORCID ID: 0000-0002-8702-5168
Código SPIN: 8437-8080

Candidate of Technical Sciences, Senior Lecturer of the Department of Structural Mechanics and Theory of Structures

1 Gagarin Sq., Rostov-on-Don, 344003, Russian Federation

Zu Bi Ti Bris Robin

Platov South Russian State Polytechnic University

Email: robin.zu.92@inbox.ru
ORCID ID: 0009-0005-1886-8777

post-graduate student of the Department of Industrial and Civil Engineering, Geotechnology and Foundation Construction

132 Prosvecheniya St, Novocherkassk, Rostov region, 346428, Russian Federation

Bibliografia

  1. Lin T.Y., Burns N.H. Design of prestressed concrete structures. Wiley Publ.; 1981. ISBN-10 9812531173
  2. Mikhailov K.V., Volkov Yu.S. Prestressed reinforced concrete: the state and prospects of development. Concrete and reinforced concrete. 2023;(5/6):7–10. (In Russ.) EDN: PXJNZR
  3. Wight J.K. Reinforced concrete: Mechanics and design. Pearson Publ.; 2013. ISBN 10 1-292-10600-X
  4. Mikhailov V.V. Prestressed reinforced concrete structures: (Theory, calculation and selection of sections). Moscow: Stroyizdat Publ.; 1978. (In Russ.) Available from: https://dwg.ru/dnl/8087 (accessed: 20.04.2025).
  5. Gibshman E.E., Gibshman M.E. Theory and calculation of prestressed reinforced concrete bridges. Moscow: Avtotransizdat Publ.; 1963. (In Russ.) Available from: https://dwg.ru/dnl/10396 (accessed: 20.04.2025).
  6. Portaev D.V. Calculation and construction of prestressed structures of civil buildings. Moscow: DIA Publ.; 2011. (In Russ.) ISBN 978-5-93093-824-1 EDN: QNPMDF
  7. Wolanski A.J. Flexural behavior of reinforced and prestressed concrete beams using finite element analysis. Marquette University, 2004. Available from: https://epublications.marquette.edu/theses/4322 (accessed: 20.04.2025).
  8. Abdelatif A.O., Owen J.S., Hussein M.F.M. Hussein Modelling the prestress transfer in pre-tensioned concrete elements. Finite Elements in Analysis and Design. 2015;94:47–63. https://doi.org/10.1016/j.finel.2014.09.007
  9. Ibrahim A.M., Mubarak H.M. Finite element modeling of continuous reinforced concrete beam with external prestressing. 2010 Concrete Bridge Conference: Achieving Safe, Smart & Sustainable Bridges. 2010:1–12. Available from: https://www.researchgate.net/publication/268982383 (accessed: 20.04.2025).
  10. Hartl H., Sparowitz L, Elgamal A. The 3D computational Modeling of Reinforced and Prestressed Concrete Structures. Proceedings of the 3rd International PhD Symposium in Civil Engineering. Vienna, 2000;2:69–79. Available from: https://www.researchgate.net/publication/228540729 (accessed: 20.04.2025).
  11. Ayoub F.C. Filippou F.C. Finite-element model for pretensioned prestressed concrete girders. Journal of Structural Engineering. 2010;136:401–409. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000132 EDN: OEKDXF
  12. Colajanni P., Recupero A., Spinella N. Design procedure for prestressed concrete beams. Computers and Concrete. 2014;13(2):235–253. https://doi.org/10.12989/cac.2014.13.2.235
  13. Ahn J.H., Jung C.Y., Kim S.H. Evaluation on structural behaviors of prestressed composite beams using external prestressing member. Structural Engineering and Mechanics. 2010;34(2):247–275. https://doi.org/10.12989/sem.2010.34.2.247 EDN: OEJQPL
  14. Prokopovich A.A. Bending resistance of reinforced concrete structures with different conditions of adhesion of longitudinal reinforcement to concrete. Samara: NVF Sensors. Modules, Systems Publ.; 2000. (In Russ.) Available from: https://djvu.online/file/XP8BprJZYRgEp (accessed: 20.04.2025).
  15. Di Luzio G., Cedolin L., Beltrami C. Tridimensional long-term finite element analysis of reinforced concrete structures with rate-type creep approach. Applied Sciences. 2020;10(14):4772. https://doi.org/10.3390/app10144772
  16. Manie J. DIANA — Finite Element Analysis User’s Manual release 9.4.4. 2011. Available from: https://dianafea.com/ manuals/d944/ConcMas/ConcMas.html (accessed: 20.04.2025).
  17. Dzyuba I.S., Vatin N.I., Kuznetsov V.D. Monolithic large-span ribbed overlap with poststressing. Magazine of Civil Engineering. 2008;(1):5–12. EDN: NBMYCH
  18. Gaidzhurov P.P., Al-Jabobi S.F., Al-Yaj M.A.H. Finite element modeling of force transmission the tension of the steel tendon on the concrete. Bulletin of Higher Educational Institutions. North Caucasus Region. Technical Sciences. 2017;(2):73–78. (In Russ.) https://doi.org/10.17213/0321-2653-2017-2-73-78 EDN: YTPOFH
  19. Gaidzhurov P.P., Iskhakova E.R., Savelyeva N.A. Influence of concrete creep on the bending of a prestressed bridge beam. Reinforced concrete structures. 2023;3(3):3–10. (In Russ.) https://doi.org/10.22227/2949-1622.2023.3.3-10 EDN: NJWSGW
  20. Ketkov Yu.L., Ketkov A.Yu., Schultz M.M. MATLAB 6.x: programming numerical methods. St. Petersburg: BHV-Petersburg Publ.; 2004. (In Russ.) ISBN 5-94157-373-1 EDN: QMNBMP

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).