Experimental and numerical investigation of thin-walled I-section beam under bending and torsion

Cover Page

Cite item

Full Text

Abstract

The aim of the research - to investigate the behavior of thin-walled beam I-section loaded with bending and torsion using theoretical, numerical, and experimental approaches. In this paper, the main criteria for consideration of the different methods of analysis is the geometric characteristic of the section. The results obtained by the finite element method, the numerical method, as well as experimental data are compared. The analysis by finite element method by considering an additional degree of freedom at a node to include the restrained torsion and the dimension of the stiffness matrix is thus 14×14. The results of the calculation according to this theory are compared with the numerical solution obtained using finite element software, and with the results of the experiment. The I-beam section subject to bending with torsion is considered. The deformations, strain, and stress distributions of open thin-walled structures subjected to bending and torsion are presented using experimental methods. The comparative results for the angle of twisting, deformations, and normal stresses in the frame element subjected to combined loading are displayed graphically. To evaluate the results, a theoretical, numerical, and experimental investigation of I-beam behavior under bending and restrained torsion was carried out. As a result of the comparison, it was revealed that the results obtained according to the refined theory proposed by the authors have good convergence with experimental data and are also quite close to the values obtained using commercial software.

About the authors

Tesfaldet H. Gebre

Peoples' Friendship University of Russia (RUDN University)

Author for correspondence.
Email: tesfaldethg@gmail.com
ORCID iD: 0000-0002-7168-5786

research assistant, Department of Civil Engineering, Academy of Engineering

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Vera V. Galishnikova

Moscow State University of Civil Engineering (National Research University)

Email: galishni@yandex.ru
ORCID iD: 0000-0003-2493-7255

Dr.Sc., Professor, Vice-Rector, Moscow State University of Civil Engineering (National Research University), Professor, Department of Civil Engineering, Peoples’ Friendship University of Russia (RUDN University)

26 Yaroslavskoye Shosse, Moscow, 129337, Russian Federation

Evgeny V. Lebed

Moscow State University of Civil Engineering (National Research University)

Email: evglebed@mail.ru
ORCID iD: 0000-0003-3926-8701

Candidate of Technical Science, Associate Professor of the Department of Metal and Wooden Structures

26 Yaroslavskoye Shosse, Moscow, 129337, Russian Federation

References

  1. Pavlenko A.D., Rybakov V.A., Pikht A.V., Mikhailov E.S. Non-uniform torsion of thin-walled open-section multi-span beams. Magazine of Civil Engineering. 2016;67(7):55-69. https://doi.org/10.5862/MCE.67.6
  2. Mysore R., Kissinger R. Finite element analysis of thin-walled beams subjected to torsion. In 30th Structures, Structural Dynamics and Materials Conference. 2012. https://doi.org/10.2514/6.1989-1176
  3. Tusnin A.R., Prokic M. Experimental research of I-beams under bending and torsion actions. Magazine of Civil Engineering. 2015;53(1). https://doi.org/10.5862/MCE.53.3
  4. Vatin N.I., Sinelnikov A.S. Strength and durability of thin-walled cross-sections. In: Jármai K., Farkas J. (eds.) Design, Fabrication and Economy of Metal Structures. Berlin, Heidelberg: Springer; 2013. https://doi.org/10.1007/978-3-642-36691-8_25
  5. Tusnin A.R., Prokic M. Selection of parameters for I-beam experimental model subjected to bending and torsion. Procedia Engineering. 2015;111:789-796. https://doi.org/10.1016/j.proeng.2015.07.146
  6. Bischoff M., Bletzinger K.-U., Wall W.A., Ramm E. Models and finite elements for thin-walled structures. Encyclopedia of Computational Mechanics. 2004. https://doi.org/10.1002/0470091355.ecm026
  7. Saadé K., Espion B., Warzée G. Non-uniform torsional behavior and stability of thin-walled elastic beams with arbitrary cross sections. Thin-Walled Structures. 2004;42(6):857-881. https://doi.org/10.1016/j.tws.2003.12.003
  8. Iu C.K., Chen W.F., Chan S.L., Ma T.W. Direct second-order elastic analysis for steel frame design. KSCE Journal of Civil Engineering. 2008;12(6):379-389. https://doi.org/10.1007/s12205-008-0379-3
  9. Jin S., Li Z., Huang F., Gan D., Cheng R., Deng G. Constrained shell finite element method for elastic buckling analysis of thin-walled members. Thin-Walled Structures. 2019;145:106409. https://doi.org/10.1016/j.tws.2019.106409
  10. Banić D., Turkalj G., Brnić J. Finite element stress analysis of elastic beams under non-uniform torsion. Transactions of Famena. 2016;40(2):71-82. https://doi.org/10.21278/TOF.40206
  11. Vlasov V.Z. Thin-walled elastic beams. Virginia: National Technical Information Service; 1984. 493 p.
  12. Wu L., Mohareb M. Finite element formulation for shear deformable thin-walled beams. Canadian Journal of Civil Engineering. 2011;38(4):383-392. https://doi.org/10.1139/L11-007
  13. Aalberg A. An experimental study of beam-columns subjected to combined torsion, bending, and axial actions. Trondheim; 1995.
  14. Gebre T.H., Galishnikova V.V. The impact of section properties on thin walled beam sections with restrained torsion. Journal of Physics: Conference Series. 2020;1687(1):012020. https://doi.org/10.1088/1742-6596/1687/1/012020
  15. Galishnikova V., Gebre T.H. The behaviour of thin-walled beam with restrained torsion. Magazine of Civil Engineering. 2022;110(2). https://doi.org/10.34910/MCE.110.9
  16. Silvestre N., Camotim D. Second-order generalised beam theory for arbitrary orthotropic materials. Thin-Walled Structures. 2002;40(9):91-820. https://doi.org/10.1016/S0263-8231(02)00026-5
  17. Gebre T., Galishnikova V., Lebed E., Tupikova E., Awadh Z. Finite element analysis of 3D thin-walled beam with restrained torsion. Lecture Notes in Civil Engineering. 2022;282:359-369. https://doi.org/10.1007/978-3-031-10853-2_34
  18. Bernardo D. New finite element for analysis of thin-walled structures. Journal of Structural Engineering. 2011;137(10):1153-1167. https://doi.org/10.1061/(asce)st.1943-541x.0000372
  19. Lopez R.D.E.F. A 3D finite beam element for the modelling of composite wind turbine wings (Master of Science Thesis). Stockholm; 2013.
  20. Gebre T., Galishnikova V., Tupikova E. Warping behavior of open and closed thin-walled sections with restrained torsion. Engineering Letters. 2022;30(1):1-8.
  21. Cambronero-Barrientos F., Díaz-del-Valle J., Martínez-Martínez J.A. Beam element for thin-walled beams with torsion, distortion, and shear lag. Engineering Structures. 2017;43:571-588. https://doi.org/10.1016/j.engstruct.2017.04.020
  22. Nguyen P.C., Kim S.E. An advanced analysis method for three-dimensional steel frames with semi-rigid connections. Finite Elements in Analysis and Design. 2014;80:23-32. https://doi.org/10.1016/j.finel.2013.11.004
  23. Galishnikova V.V., Gebre T.H., Tupikova E.M., Niazmand M.A. The design guide for space frames with or without warping restraint at nodes. AIP Conference Proceedings.2022;2559(050016). https://doi.org/10.1063/5.0099013
  24. Robertson I.N., Knapp R.H. Toward advanced analysis in steel frame design. Hawaii; 2003.
  25. Tusnin A. Finite element for calculation of structures made of thin-walled open profile rods. Procedia Engineering. 2016;150:1673-1679. https://doi.org/10.1016/j.proeng.2016.07.149
  26. Mohri F., Eddinari A., Damil N., Potier Ferry M. A beam finite element for non-linear analyses of thin-walled elements. Thin-Walled Structures. 2008;46(7-9):981-990. https://doi.org/10.1016/j.tws.2008.01.028
  27. Gunnlaugsson G.A., Pedersen P.T. A finite element formulation for beams with thin walled cross-sections. Computers and Structures. 1982;15(6):691-699. https://doi.org/10.1016/S0045-7949(82)80011-4
  28. Chen H.H., Lin W.Y., Hsiao K.M. Co-rotational finite element formulation for thin-walled beams with generic open section. Computer Methods in Applied Mechanics and Engineering. 2006;195(19-22):2334-2370.
  29. Kugler S., Fotiu P., Murín J. On the access to transverse shear stiffnesses and to stiffness quantities for non-uniform warping torsion in FGM beam structures. Strojnicky Casopis. 2019;69(2):27-56. https://doi.org/10.2478/scjme-2019-0016
  30. Lalin V., Rybakov V., Sergey A. The finite elements for design of frame of thin-walled beams. Applied Mechanics and Materials. 2014;578-579:858-863. https://doi.org/10.4028/www.scientific.net/AMM.578-579.858
  31. Lalin V.V., Rybakov V.A., Ivanov S.S., Azarov A.A. Mixed finite-element method in V.I. Slivker’s semi-shear thin-walled bar theory. Magazine of Civil Engineering. 2019;89(5):79-93.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).