Innovation structures of very lean roller compacted concrete dams

Cover Page

Cite item

Abstract

Over the past 20 years, rolled compacted concrete (RCC) dams have continued to be built in many countries because of their technical and economic advantages over conventional dams of vibrating concrete and embankment dams. The aim of this study is the development of new structural and technological solutions in RCC dams in order to reduce the consumption of cement and expand their use on non-rock foundations, which will allow them to successfully compete with concrete face rockfill dams. The numerical analyses of static and seismic stress-strain state (SST) of gravitational dams in roller compacted very lean concrete dams have been made, as well as their stability, strength and cost have been assessed. For rock and dense sandy-gravel foundations the most economical is the concrete face rockfill dam and symmetrical RCC dam of very lean concrete with bases (0.5-0.7) of both slopes and outer zones of conventional concrete and central zone of rockfill strengthened by cement-ash mortar. Taking into account that the cost of diversion and spillway tunnels for very lean RCC dam will be less and the construction period - shorter than for the concrete face rockfill dam, it can be concluded that variant of symmetrical RCC dam of very lean concrete is the technically and economically effective. Symmetrical RCC dams of very lean concrete with 1V/(0.5-0.7)H slopes have more seismic resistance and technical and economic efficiency as compared with conventional gravitational RCC dams and other types of dams. These dams up to 200 m high can be built on rock foundations and up to 100 m high - on dense sandy gravel foundations.

About the authors

Yury P. Lyapichev

Hydroproject Institute (Joint Stock Company); International Commission on Large Dams (ICOLD)

Author for correspondence.
Email: lyapichev@mail.ru
ORCID iD: 0000-0003-3750-3165

expert for foreign projects, member of the ICOLD, Doctor of Technical Sciences, Professor

2 Volokolamskoe Shosse, Moscow, 125993, Russian Federation; 61 Kleber Ave., Paris, 75016, French Republic

References

  1. Londe P. The faced symmetrical hardfill dam: a new concept for RCC. Intern. Water Power and Dam Construction. 1992:19-24.
  2. Jinsheng J., Cuiying Z., Zhenkun D. Cemented material dams and their application. Hydropower and Dams. 2015; 22(6):64-67.
  3. Lyapichev Yu. Presas de concreto compactado con rodillo (CCR) y presas mixtas de CCR y escollera (Aspectos de Diseño y Construccion). Seminar sobre presas de CCR. Medellin, Colombia: Compania ISAGEN; 1998. p. 102.
  4. Lyapichev Yu.P. Design, construction and behavior of modern high dams. Part 1. Dams made of rolled concrete. Saarbrücken: Palmarium Academic Publish; 2013. (In Russ.)
  5. Kalpakci V., Bonab A.T., Ozkan M.Y. Experimental evaluation of geomembrane/geotextile interface as base isolating system. Geosynthetics Intern. 2018;25(1):1-11. https://doi.org/10.1680/jgein.17.00025
  6. Yang P., Xue S.B., Song L., Zhu X.W. Numerical simulation of geomembrane wrinkle formation. Geotextiles and Geomembranes. 2017;45(6):697-701. https://doi.org/10.1016/j.geotexmem.2017.08.001
  7. Giroud J. Leakage control by geomembranes. Soils and Rocks. 2016;3:213-235.
  8. Moutafis N., Thanopoulos Y. Geomembrane faced hardfill dam. Hydro 2015. Bordeaux, France; 2015.
  9. ICOLD Bulletin 135. Geomembrane sealing systems for dams. 2010.
  10. Blinder S., Toniatti N. RCC and CFR Dams. Cost Comparision, Intern. Symposium on RCC Dams, Santander, Spain. 1995:71-83.
  11. Cervera M., Oliver J., Prato T. Simulation of construction of RCC dams. Part II: stress and damage. Journal of Structural Engineering. 2000;126(9):1062-1069. https://doi.org/10.1061/(asce) 0733-9445(2000)126:9(1062)
  12. Zhang X., Li S., Li Y., Ge Y., Li H. Effect of superficial insulation on RCC dams in cold regions. Advances in Engineering Software. 2011;42:939-943. https://doi.org/10.1016/j.advengsoft. 2011.06.004
  13. Tamagava S. Toubetsu dam: example of innovative CSG technology. Hydropower and Dams. 2012;19(3):64-67.
  14. Fujisawa T., Sasaki T. Development of the trapezoidal CSG dam. Hydropower and Dams. 2012;19(3):58-63.
  15. Kuzmanovic V., Savic L., Mladenovic N. Computation of thermal-stresses and contraction joint distance of RCC Dams. Journal of Thermal Stresses. 2013;36(2):112-134. https://doi.org/10.1080/ 01495739.2013.764795
  16. Mohamed I. Investigating the possibility of constructing low cost RCC dam. Alexandria Engineering Journal. 2014;53(1):131-142. https://doi.org/10.1016/j.aej.2013.11.009
  17. Gu Q., Yu C., Lin P., Ling X., Tang L., Huang S. Performance assessment of a concrete gravity dam at Shenwo reservoir of China using deterministic and probabilistic methods. International Journal of Structural Stability & Dynamics. 2014;14(05):1440002. https://doi.org/10.1142/S0219455414400021
  18. Du C.B., Wu S.Y., Zhang S.R. Full-scale dynamic simulation and visualization for structure safety and schedule coupling of RCC gravity dams. 2017 International Conference on Smart Grid and Electrical Automation (ICSGEA). 2017;1:481-487. https://doi.org/10.1109/ICSGEA.2017.96
  19. Wanga L., Yang H.Q., Zhou S.H., Chen E., Tang S.W. Mechanical properties, long-term hydration heat, shinkage behavior and crack resistance of dam concrete designed with low heat Portland (LHP) cement and fly ash. Construction and Building Materials. 2018;187:1073-1091. https://doi.org/10.1016/j.conbuildmat.2018.08.056
  20. Batmaz S. Cindere dam - 107 m high RCC dam (RCHD). Proceedings of IV International Symposium on RCC Dams, Madrid, Spain. 2003;1:121-126.
  21. Bayagoob K., Bamaga S. Construction of roller compacted concrete dams in hot arid regions. Materials. 2019;12(19):3064. https://doi.org/10.3390/ma12193064
  22. ICOLD Bulletin 177. Roller compacted concrete dams. 2020.
  23. Aniskin N.A., Shajtanov A.M. Low-cement concrete dams: construction, structures and innovations. Vestnik MGSU. 2019;15(7):1018-1029. (In Russ.) https://doi.org/10.22227/1997-0935.2020.7.1018-1029
  24. Sainov M.P., Shigarov A.Yu., Yasafova S.A. Reinforcement impact on the stress-deformation state of concrete faced rockfill dam. Vestnik MGSU. 2019;14(3):347-355. (In Russ.) https://doi.org/10.22227/1997-0935.2019.3.347-355.
  25. Hu K., Chen J., Wang D. Shear stress analysis and crack prevention measures for a concrete face rockfill dam, advanced construction of a first-stage face slab, and a first-stage face slab in advanced reservoir water storage. Advances in Civil Engineering. 2018;2018:2951962. https://doi.org/10.1155/2018/2951962
  26. Sukkarak R., Pramthawee P., Jongpradist P., Kongkitkul W., Jamsawang P. Deformation analysis of high CFRD considering the scaling effects. Geomechanics and Engineering. 2018;14(3):211-224. https://doi.org/10.12989/gae.2018.14.3.211
  27. Glagovsky V.B., Radchenko V.G. New trends in the construction of ground dams. Gidrotekhnicheskoe Stroitel'stvo. 2013;(1):2-8. (In Russ.)
  28. SNiP. 33-03. Hydraulic structures in seismic regions. Moscow: State Building Committee of Russia; 2003. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).