Теоретическая оценка стабильности частоты сигнала цифрового термокомпенсированного кварцевого генератора с термодатчиком на основе двух вспомогательных кварцевых генераторов

Обложка

Цитировать

Полный текст

Аннотация

В статье дана теоретическая предельная оценка стабильности цифрового термокомпенсированного кварцевого генератора с термодатчиком на основе двух вспомогательных кварцевых генераторов. Получены результаты: 7,5 ppb (для неспокойной среды) и 0,75 ppb (для спокойной среды). Исследованы технические решения получения линейной однозначной зависимости значения разностной частоты от температуры и увеличения крутизны этой зависимости, позволяющие получать разрешение по измерению температуры до 0,001 ºС.

Об авторах

Сергей Михайлович Кулясов

Омский государственный технический университет

Автор, ответственный за переписку.
Email: ychenik_11585@mail.ru

аспирант кафедры «Радиотехнические устройства и системы диагностики»

Россия, г. Омск

Денис Михайлович Четтер

Омский государственный технический университет

Email: dmchetter@omgtu.ru

аспирант кафедры «Радиотехнические устройства и системы диагностики»

Россия, г. Омск

Алексей Николаевич Ляшук

Омский государственный технический университет

Email: pribor78@mail.ru
ORCID iD: 0000-0002-6394-9390
SPIN-код: 1635-6235
ResearcherId: R-2812-2016

кандидат технических наук, доцент кафедры «Радиотехнические устройства и системы диагностики»

Россия, г. Омск

Список литературы

  1. Косых А. В. Адаптивная динамическая температурная компенсация уходов частоты кварцевых генераторов // Омский научный вестник. 2008. № 1 (64). С. 163–169. EDN: JVZMQL.
  2. Deng X., Wang Sh., Jing Sh. [et al.]. Dynamic Frequency–Temperature Characteristic Modeling for Quartz Crystal Resonator Based on Improved Echo State Network // IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2022. Vol. 69 (1). P. 438–446. doi: 10.1109/TUFFC.2021.3118929.
  3. Abramson I. Two-mode quartz resonator for digital temperature compensated quartz oscillators // Proceedings of the 1992 IEEE Frequency Control Symposium. 1992. P. 443–447. doi: 10.1109/FREQ.1992.269982.
  4. Benjaminson A., Stalling S. A microcomputer compensated crystal oscillator using a dual-mode resonator // Proceedings of the 43rd Annual Symposium on Frequency Control. 1989. P. 20–26. doi: 10.1109/FREQ.1989.68854.
  5. Watanabe Y., Sekimoto H., Goka S. [et al.]. A dual mode oscillator based on narrow-band crystal oscillators with resonator filters // Proceedings of International Frequency Control Symposium. 1997. P. 365–372. doi: 10.1109/FREQ.1997.639211.
  6. Kusters J. A., Leach J. G., Ficher M. S. Quartz resonator cut to compensate for static and dynamic thermal transient. US patent 4079280; filed June 2nd, 1976; published March 14th, 1978.
  7. Гослинг В. Цифровой метод компенсации температурной нестабильности кварцевых генераторов // Электроника. 1978. № 19. C. 16–17.
  8. Kaoru K., Yoshiaki M., Tsukasa K. [et al.]. High-Performance DSP-TCXO Using Twin-Crystal Oscillator // 2014 IEEE International Frequency Control Symposium (FCS). 2014. P. 1–4. doi: 10.1109/FCS.2014.6859849.
  9. ГОСТ 21655-87. Каналы и тракты магистральной первичной сети единой автоматизированной системы связи. Электрические параметры и методы измерений. Введ. 01–01–1989. Москва: Изд-во стандартов, 1988. 106 с.
  10. Чистяков А. Н. Цифровая термокомпенсация кварцевых генераторов // Радиотехника. 1983. № 7. C. 54–56.
  11. Hayashi K., Yokozeki Y., Kunitomo H. The High Short-Term Frequency Stability Digitally Controlled X’tal Oscillator with Small Size and Low Power Consumption // 2023 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS). 2023. P. 1–6. doi: 10.1109/EFTF/IFCS57587.2023.10272093.
  12. Малов В. В. Пьезорезонансные датчики. 2-е изд., перераб. и доп. Москва: Энергоатомиздат,1989. 272 с.
  13. Андросова В. Г., Банков В. Н., Дикиджи А. Н. [и др.]. Справочник по кварцевым резонаторам / под ред. П. Г. Позднякова. Москва: Связь, 1978. 288 с.
  14. Хоменко И. В., Косых А. В. Кварцевые резонаторы и генераторы. Омск: Изд-во ОмГТУ, 2018. 157 с. ISBN 978-5-8149-2583-1.
  15. Peng F., Huang X., Li Y. [et al.]. Realization of Voltage Controlled Temperature Compensated Crystal Oscillator with Single Varactor // 2018 IEEE International Frequency Control Symposium (IFCS). 2018. P. 1–3. doi: 10.1109/FCS.2018.8597501.
  16. Дворяшин Б. В. Метрология и радиоизмерения. Москва: Издат. центр Академия, 2005. 304 с.
  17. Косых А. В. Кварцевые генераторы с цифровой термокомпенсацией: проблемы и перспективы реализации // Омский научный вестник. 2006. № 1 (34). С. 121–125. EDN: HTSJNN.
  18. Артемьев Б. Г., Голубев С. М. Справочное пособие для работников метрологических служб. В 2 кн. 3-е изд., перераб. и доп. Москва: Изд-во стандартов, 1990. Кн. 1. С. 1–428.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».