Improving the Accuracy of Time Synchronization Through Frequency Synchronization in Virtualized Integrated Systems

Cover Page

Cite item

Full Text

Abstract

Relevance. In recent years, virtualized integrated systems have widely become the base architectural solution for industrial automation systems. TSN technology is being used in their telecommunications networks, as it is the most suitable solution for mission-critical applications with stringent requirements for speed and guaranteed information delivery. The quality of TSN networks, in turn, depends on the accuracy of their time synchronization. Therefore, developing methods to improve the accuracy of time synchronization of packet-switched network devices is a pressing scientific and practical challenge.Purpose of the work: to examine ways to improve the accuracy of time synchronization in networks of virtualized integrated systems using TSN technology, and the impact of network clock synchronization provided by synchronous Ethernet technology.Methods used: the impact of network clock synchronization on the accuracy of timescale reference is assessed using the results of simulation modeling of time and clock synchronization processes in the AnyLogic environment.Results: the paper presents a chain of interactions between information and telecommunication technologies, as well as supporting telecommunication subsystems, demonstrating in aggregate the operating principles of complex embedded computer systems and a method for determining their characteristics based on modeling. The results of simulation modeling are also presented, demonstrating that high accuracy of time scale binding and stability of its retention can be achieved through the joint implementation of frequency and time synchronization, which plays an important role in TSN application scenarios.Practical significance: implementing frequency synchronization in a network supporting TSN technology enables high-precision time synchronization of network devices while using fewer synchronization messages to reduce the amount of service traffic. This allows that to save costs less stable clock generators may be used, as their frequency is consistently adjusted.

About the authors

N. L. Storozhuk

The Bonch-Bruevich Saint Petersburg State University of Telecommunications

Email: storozhuk.nl@sut.ru
ORCID iD: 0009-0005-7463-502X
SPIN-code: 9469-0347

References

  1. Pahlevan M. Time Sensitive Networking for Virtualized Integrated Real-Time Systems. D.Sc Dissertation. Siegen: University of Siegen, 2019. 188 p.
  2. Галчихин В.И., Сторожук Н.Л., Шитников В.И. Расчет норм на показатели ошибок в действующих цифровых трактах взаимоувязанной сети связи России // Электросвязь. 2002. № 4. с. 17−20.
  3. Kopetz H. Real-Time Systems, Design Principles for Distributed Embedded Applications. Cham: Springer, 2011. doi: 10.1007/b116085
  4. Сторожук М.Н. Мониторинг сетевого трафика в магистральных сетях для обеспечения работы сетей TSN // Первая миля. 2022. № 3(103). С. 30–33. doi: 10.22184/2070-8963.2022.103.3.30.33. EDN:WTTPBK
  5. Craciunas S.S., Oliver R.S. Out-of-sync Schedule Robustness for Time-sensitive Networks // Proceedings of the 17th International Conference on Factory Communication Systems (WFCS, Linz, Austria, 09–11 June 2021). IEEE, 2021. PP. 75–82. doi: 10.1109/WFCS46889.2021.9483602
  6. IEEE 802.1AS-2020. IEEE Standard for Local and Metropolitan Area Networks--Timing and Synchronization for Time-Sensitive Applications.
  7. Воробьев А.С., Сторожук Н.Л. Тенденции развития оборудования сетевой синхронизации // Радионавигация и время: труды СЗРЦ Концерна ВКО «Алмаз – Антей». 2022. № 10(18). C. 28−33. EDN:GTAMWD
  8. Коган С. Сети 5G: Распределение сигналов синхронизации на сетевом оптическом транспортном уровне. Часть 2. Сетевая синхронизация по тактовой частоте // Первая миля. 2022. № 5(105) С. 44–58. doi: 10.22184/2070-8963.2022.105.5.44.58. EDN:STTKQU
  9. ГОСТ Р 71148-2023. Требования по построению систем синхронизации сетей связи: сетей связи с коммутацией каналов, сетей связи с коммутацией пакетов. М.: Российский институт стандартизации, 2024.
  10. Шварц М.Л., Рыжков А.В., Аладин В.М. Перспективный первичный эталон времени и частоты для систем частотно-временного обеспечения сетей связи // T-Comm: Телекоммуникации и транспорт. 2022. Т. 16. № 8. С. 12–20. doi: 10.36724/2072-8735-2022-16-8-12-20. EDN:GFOETJ
  11. Chowdhury D. NextGen Network Synchronization. Cham: Springer, 2018. 269 p. doi: 10.1007/978-3-030-71179-5
  12. Menendez Y. Improving synchronization accuracy with help from SyncE. URL: https://www.nokia.com/blog/improving-synchronization-accuracy-with-help-from-synce (Accessed 30.01.2025)
  13. Рекомендация МСЭ-T G.8262/Y.1362 Характеристики хронирования ведомых тактовых генераторов оборудования синхронного Ethernet. 2015.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).