Methodology for Selecting a Carrier Platform and Estimating the Vertical Vision Time of an UAV for Operational Deployment of Communications
- Authors: Ivanov V.S.1
-
Affiliations:
- MIREA ‒ Russian Technological University
- Issue: Vol 11, No 6 (2025)
- Pages: 34-42
- Section: ELECTRONICS, PHOTONICS, INSTRUMENTATION AND COMMUNICATIONS
- URL: https://ogarev-online.ru/1813-324X/article/view/367938
- DOI: https://doi.org/10.31854/1813-324X-2025-11-6-34-42
- EDN: https://elibrary.ru/DDIGSG
- ID: 367938
Cite item
Full Text
Abstract
The purpose of the study is to select and justify the flight and technical characteristics of an unmanned platform for integration with a portable relay station in order to create mobile communication networks. The relevance of this task is due to the need for prompt restoration of communication during the elimination of the consequences of emergencies, when the stationary infrastructure is damaged. The methodology of the work includes a comparative analysis of the market of electric UAVs by the criteria of load-lifting and flight time, as well as a detailed aerodynamic calculation of the hovering time, taking into account the mass and energy consumption of the payload.Results. It has been established that light commercial platforms do not have the necessary load capacity for standard repeaters. It has been shown that heavy agricultural UAVs are capable of carrying repeaters weighing up to 10 kg. Based on the analysis of the obtained non-linear dependence of flight time on load weight, it has been concluded that the miniaturization of repeaters is critical.The scientific novelty of the work lies in the development of an algorithmic approach to configuring a mobile relay complex and establishing a quantitative non-linear dependence of the hovering time on the payload mass for heavy agricultural UAVs. The practical significance of the results is to substantiate the choice of a specific carrier platform and relay equipment for creating an operational complex suitable for rapid deployment by emergency services and other forces.
About the authors
V. S. Ivanov
MIREA ‒ Russian Technological University
Email: Ivanovmirea1@yandex.ru
ORCID iD: 0000-0001-9827-1690
SPIN-code: 1026-8861
References
- Al-Hourani A., Kandeepan S., Lardner S. Optimal LAP Altitude for Maximum Coverage // IEEE Wireless Communications Letters. 2014. Vol. 3. Iss. 6. PP. 569–572. doi: 10.1109/LWC.2014.2342736
- Mozaffari M., Saad W., Bennis M., Debbah M. Mobile Unmanned Aerial Vehicles (UAVs) for Energy-Efficient Internet of Things Communications // IEEE Transactions on Wireless Communications. 2017. Vol. 16. Iss. 11. PP. 7574‒7589. doi: 10.1109/TWC.2017.2751045
- Lyu J., Zeng Y., Zhang R., Lim T.J. Placement Optimization of UAV-Mounted Mobile Base Stations // IEEE Communications Letters. 2016. Vol. 21. Iss. 3. PP. 604‒607. doi: 10.1109/LCOMM.2016.2633248
- Бурмистров А. Беспилотник на поводке. Профессор Владимир Вишневский о привязных высотных платформах // Научная Россия. 2024. URL: https://scientificrussia.ru/articles/bespilotnik-na-povodke-professor-vladimir-visnevskij-o-privaznyh-vysotnyh-platformah (дата обращения: 29.12.2024)
- Ozdemir U., Aktas Y.O., Vuruskan A., Dereli Y., Tarhan A.F., Demirbag K., et al. Design of a Commercial Hybrid VTOL UAV System // Journal of Intelligent & Robotic Systems. 2014. Vol. 74. PP. 371‒393. doi: 10.1007/s10846-013-9900-0. EDN:ZSTJLI
- Давлюд И.И. Расчет основных эксплуатационных характеристик привязной высотной системы корабельного базирования // Russian Technological Journal. 2024. Т. 12. № 4. С. 40–50. doi: 10.32362/2500-316X-2024-12-4-40-50. EDN:ECAQGY
- Чан Т.З., Кучерявый А.Е. Оптимизация использования ресурсов воздушных базовых станций на основе методов искусственного интеллекта // Труды учебных заведений связи. 2025. Т. 11. № 1. С. 62‒68. doi: 10.31854/1813-324X-2025-11-1-62-68. EDN:RVENVC
- Джонсон У. Теория вертолета. Пер. с англ. М.: Издательство «Курьер», 2012. 784 с.
- Nonami K., Kendoul F., Suzuki S., Wang W., Nakazawa D. Autonomous Flying Robots: Unmanned Aerial Vehicles and Micro Aerial Vehicles. Springer, 2010. 329 p.
- Wang J., Liu P., Hicks-Garner J., Sherman E., Soukiazian S., Verbrugge M., et al. Cycle-life model for graphite-LiFePO₄ cells // Journal of Power Sources. 2011. Vol. 196. Iss. 8. PP. 3942‒3948. doi: 10.1016/j.jpowsour.2010.11.134
Supplementary files

