Implementation of an ECC Digital Signature Technique in Constrained Environments
- Authors: Sabbry N.H1
-
Affiliations:
- Saint Petersburg Electrotechnical University
- Issue: Vol 11, No 2 (2025)
- Pages: 101-108
- Section: INFORMATION TECHNOLOGIES AND TELECOMMUNICATION
- URL: https://ogarev-online.ru/1813-324X/article/view/293579
- EDN: https://elibrary.ru/DWRJHM
- ID: 293579
Cite item
Full Text
Abstract
About the authors
N. H Sabbry
Saint Petersburg Electrotechnical University
Email: nawrashussein@mail.ru
References
- Johnson D., Menezes A., Vanstone S. The Elliptic Curve Digital Signature Algorithm (ECDSA) // International Journal of Information Security. 2001. Vol. 1. PP. 36‒63. doi: 10.1007/s102070100002
- Josefsson S., Liusvaara I. Edwards-Curve Digital Signature Algorithm (EdDSA). 2017. doi: 10.17487/RFC8032
- Sabbry N.H., Levina A.B. An Optimized Point Multiplication Strategy in Elliptic Curve Cryptography for Resource-Constrained Devices // Mathematics. 2024. Vol. 12. Iss. 6. P. 881. doi: 10.3390/math12060881. EDN:JZKADF
- Hisil H., Wong K.K., Carter G., Dawson E. Twisted Edwards Curves Revisited // Proceedings of the 14th International Conference on the Theory and Application of Cryptology and Information Security (ASIACRYPT 2008, Melbourne, Austral-ia, 7‒11 December 2008). Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2008. Vol. 5350. PP. 326‒343. doi: 10.1007/978-3-540-89255-7_20
- Sabbry N.H., Levina A. Nonce generation techniques in Schnorr multi-signatures: Exploring EdDSA-inspired approaches // AIMS Mathematics. 2024. Vol. 9. Iss. 8. PP. 20304‒20325. doi: 10.3934/math.2024988. EDN:YSJYIC
- Paar C., Pelzl J. Understanding Cryptography: A Textbook for Students and Practitioners. Berlin, Heidelberg: Springer, 2010. doi: 10.1007/978-3-642-04101-3
- Hankerson D., Menezes A. Elliptic Curve Cryptography // In: Jajodia S., Samarati P., Yung M. (eds.) Encyclopedia of Cryptography, Security and Privacy. Berlin, Heidelberg: Springer, 2021. PP. 1‒2. doi: 10.1007/978-3-642-27739-9_245-2
- Izu T., Möller B., Takagi T. Improved Elliptic Curve Multiplication Methods Resistant Against Side Channel Attacks // Proceedings of the Third International Conference on Cryptology in India (INDOCRYPT 2002, Hyderabad, India, 16–18 December 2002). Lecture Notes in Computer Science. Berlin Heidelberg: Springer, 2002. Vol. 2551. PP. 296‒313. doi: 10.1007/3-540-36231-2_24
- Shenets N.N., Petushkov A.S. New Regular Sliding Window Algorithms for Elliptic Curve Scalar Point Multiplication // Automatic Control and Computer Sciences. 2021. Vol. 55. PP. 1029‒1038. doi: 10.3103/S0146411621080289. EDN:FWONTD
- Cheon J.H., Hong J., Kim M. Speeding Up the Pollard Rho Method on Prime Fields // Proceedings of the 14th International Conference on the Theory and Application of Cryptology and Information Security (ASIACRYPT 2008, Melbourne, Australia, 7‒11 December 2008). Berlin, Heidelberg: Springer, 2008. PP. 471‒488. doi: 10.1007/978-3-540-89255-7_29
- Alyas H.H., Abdullah A.A. Enhancement the ChaCha20 Encryption Algorithm Based on Chaotic Maps // In: Kumar R., Mishra B.K., Pattnaik P.K. Next Generation of Internet of Things: Proceedings of ICNGIoT 2021. Lecture Notes in Networks and Systems. Singapore: Springer, 2021. Vol. 201. PP. 91‒107. doi: 10.1007/978-981-16-0666-3_10. EDN:ZPPOQO
- Hutter M., Schwabe P. NaCl on 8-Bit AVR Microcontrollers // Proceedings of the 6th International Conference on Cryptology in Africa «Progress in Cryptology» (AFRICACRYPT 2013, Cairo, Egypt, 22‒24 June 2013). Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2013. Vol. 7918. PP. 156‒172. doi: 10.1007/978-3-642-38553-7_9
- Nouma S.E., Yavuz A.A. Lightweight and Resilient Signatures for Cloud-Assisted Embedded IoT Systems // arXiv preprint arXiv:2409.13937. 2024. doi: 10.48550/arXiv.2409.13937
Supplementary files
