A Hybrid Approach to Local Contrast Enhancement Using Adaptive Neural Network Parameter Control

Cover Page

Cite item

Full Text

Abstract

Relevance. Modern image processing techniques are focused on enhancing visual quality, particularly through adaptive local contrast enhancement. Previously, classical algorithms were employed to achieve high contrast efficiency; however, these approaches failed to account for the global scene context and often led to noise amplification. This paper proposes a hybrid method for adaptive local image contrast enhancement utilizing neural network-based parameter adjustment.The aim of this research is to develop an algorithm that provides optimal contrast enhancement while minimizing noise artifacts and distortions, thereby improving contrast and real-time object detection accuracy.The essence of the proposed solution lies in employing a convolutional neural network for automatic configuration of local contrast parameters based on statistical brightness characteristics and textural image features. The proposed method incorporates image segmentation into local regions, analysis of their properties, and adaptive adjustment of processing parameters. This results in improved discernibility of low-contrast objects under various imaging conditions. The algorithm's operating principle is based on dynamically selecting local region dimensions and contrast parameters depending on background and target scene objects. The integration of a neural network module enables precise adjustment of processing parameters while minimizing undesirable artifacts such as halos and blockiness. The methodology has been implemented as software and hardware for an optoelectronic system designed for computer vision applications, aerial image processing, video surveillance systems, and locating victims in various disaster scenarios.The scientific novelty of this work lies in the development of an algorithm that automatically regulates contrast parameters based on analysis of both global and local scene context using artificial intelligence.The theoretical significance of the work consists in the development of a contrast enhancement algorithm and image quality assessment method that accounts for contrast perception characteristics by both humans and AI systems under challenging observational conditions, such as fog, smoke, low illumination, etc.The practical significance of the developed algorithm is determined by its implementation of contrast enhancement for objects in images acquired in both visible and infrared spectral ranges, and by the reliability of their recognition using artificial intelligence.

About the authors

I. Yu. Gritskevich

The Bonch-Bruevich Saint Petersburg State University of Telecommunications

Email: gritskevich.iu@sut.ru

References

  1. Jobson D.J., Rahman Z., Woodell G.A. Properties and performance of a center/surround retinex // IEEE Transactions on Image Processing. 1997. Vol. 6. Iss. 3. PP. 451‒462. doi: 10.1109/83.557356
  2. Chen Y.S., Wang Y.C., Kao M.H., Chuang Y.Y. Deep Photo Enhancer: Unpaired Learning for Image Enhancement from Photographs with GANs // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR, Salt Lake City, USA, 18‒23 June 2018). IEEE, 2018. doi: 10.1109/CVPR.2018.00660
  3. Paris S., Hasinoff S.W., Kautz J. Local Laplacian filtering: edge-aware image processing with a Laplacian pyramid // Proceedings of the Conference on Special Interest Group on Computer Graphics and Interactive Techniques (SIGGRAPH '11, Vancouver, Canada, 7‒11 August 2011). New York: Association for Computing Machinery, 2011. URL: https://people.csail.mit.edu/sparis/publi/2011/siggraph/Paris_11_Local_Laplacian_Filters_lowres.pdf (Accessed 25.04.2025)
  4. Грицкевич И.Ю., Гоголь А.А. Алгоритм безэталонной оценки качества изображений // Труды учебных заведений связи. 2024. Т. 10. № 2. С. 16‒23. doi: 10.31854/1813-324X-2024-10-2-16-23. EDN:TTPABW
  5. Rec. ITU-R BT.500-11. Methodology for subjective assessment of the quality of television pictures. ITU-T. 2002. (23)
  6. Шелепин Ю.Е. Введение в нейроиконику. СПб.: Троицкий мост, 2017. 352 с. EDN:YNTJRJ
  7. Kim Y.T. Contrast enhancement using brightness preserving bi-histogram equalization // IEEE Transactions on Consumer Electronics. 1997. Vol. 43. Iss. 1. doi: 10.1109/30.580378
  8. Rahman Z., Jobson D.J., Woodell G.A. Multi-scale retinex for color image enhancement // Proceedings of the 3rd International Conference on Image Processing (Lausanne, Switzerland, 19 September 1996). IEEE, 1996. doi: 10.1109/ICIP.1996.560995
  9. Ying Z., Li G., Gao W. A Bio-Inspired Multi-Exposure Fusion Framework for Low-light Image Enhancement // arXiv preprint arXiv:1711.00591. 2017. doi: 10.48550/arXiv.1711.00591
  10. Vala H.J., Baxi A. A review on Otsu image segmentation algorithm // International Journal of Advanced Research in Computer Engineering & Technology. 2013. Vol. 2. Iss. 2. PP. 387‒389.
  11. Cybenko G. Approximation by superpositions of a sigmoidal function // Mathematics of Control, Signals and Systems. 1989. Vol. 2. PP. 303–314. doi: 10.1007/bf02551274. EDN:OKSIPR
  12. Wang R., Zhang Q., Fu C.W., Shen X., Zheng W.S., Jia J. Underexposed Photo Enhancement Using Deep Illumination Estimation // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR, Long Beach, USA, 15‒20 June 2019). IEEE, 2019. doi: 10.1109/CVPR.2019.00701 (13)
  13. Han Y., Ye J.C. Framing U-Net via Deep Convolutional Framelets: Application to Sparse-View CT // IEEE Transactions on Medical Imaging. 2018. Vol. 37. Iss. 6. PP. 1418‒1429. doi: 10.1109/TMI.2018.2823768
  14. What is Histogram Equalization and how it works? // Great Learning. 2024. URL: https://www.mygreatlearning.com/blog/histogram-equalization-explained (Accessed 25.04.2025)
  15. Liu J., Li D., Yuan C., Luo B., Wu G. A low-light image enhancement method with brightness balance and detail preservation // PLoS One. 2022. Vol. 17. Iss. 5. P. e0262478. doi: 10.1371/journal.pone.0262478. EDN:DFDSOY
  16. Pizer S.M., Amburn E.P., Austin J.D., Cromartie R., Geselowitz A., Greer T., et al. Adaptive histogram equalization and its variations // Computer Vision, Graphics, and Image Processing. 1987. Vol. 39. Iss. 3. PP. 355‒368. doi: 10.1016/S0734-189X(87)80186-X
  17. Kaur M., Kaur J., Kaur J. Survey of Contrast Enhancement Techniques based on Histogram Equalization // International Journal of Advanced Computer Science and Applications. 2011. Vol. 2. Iss. 7. doi: 10.14569/IJACSA.2011.020721
  18. Zuiderveld K. VIII.5. ‒ Contrast Limited Adaptive Histogram Equalization // In: Heckbert P.S. (ed.) Graphics Gems IV. Academic Press, 1994. PP. 474‒485. doi: 10.1016/B978-0-12-336156-1.50061-6
  19. Lore K.G., Akintayo A., Sarkar S. LLNet: A Deep Autoencoder Approach to Natural Low-light Image Enhancement // Pattern Recognition. 2017. Vol. 61. PP. 650‒662. doi: 10.1016/j.patcog.2016.06.008
  20. Wei C., Wang W., Yang W., Liu J. Deep Retinex Decomposition for Low-Light Enhancement. 2018. URL: http://39.96.165.147/Pub%20Files/2018/chen_bmvc18.pdf (Accessed 25.04.2025)
  21. Liu X., Ma Y., Shi Z., Chen J. GridDehazeNet: Attention-Based Multi-Scale Network for Image Dehazing // Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV, Seoul, South Korea, 27 October ‒ 02 November 2019). IEEE, 2019. doi: 10.1109/ICCV.2019.00741
  22. Guo C., Li C., Guo J., Loy C.C., Hou J., Kwong S., Cong R. Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR, Seattle, USA, 13‒19 June 2020). IEEE, 2020. doi: 10.1109/CVPR42600.2020.00185
  23. Hossain F., Alsharif M.R. Image Enhancement Based on Logarithmic Transform Coefficient and Adaptive Histogram Equalization // Proceedings of the International Conference on Convergence Information Technology (ICCIT 2007, Gwangju, South Korea, 21‒23 November 2007). IEEE, 2007. doi: 10.1109/ICCIT.2007.4420457
  24. Stark J.A. Adaptive image contrast enhancement using generalizations of histogram equalization // IEEE Transactions on Image Processing. 2000. Vol. 9. Iss. 5. PP. 889‒896. doi: 10.1109/83.841534
  25. Потапова А.А. Новейшие методы обработки изображений. М.: ФИЗМАТЛИТ, 2008. 496 с.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».