No-Reference Image Quality Assessment Algorithm

Cover Page

Cite item

Full Text

Abstract

The presented article focuses on the development of a local image quality assessment algorithm, specifically designed for analyzing contrast and overall visual data quality. The proposed algorithm aims to enhance the efficiency of image assessment, particularly in conditions of low contrast and the presence of various types of noise. The algorithm's methodology takes into account spectral ranges and provides precise local contrast assessment, making it applicable to a broad spectrum of tasks related to image analysis and enhancement. The developed approach has the potential to improve the quality of visual data by supporting crucial aspects of contrast perception and overall image quality.

About the authors

I. Yu. Gritskevich

The Bonch-Bruevich Saint-Petersburg State University of Telecommunications

Email: i@robotace.ru
ORCID iD: 0009-0007-4916-1816
SPIN-code: 9840-3941

A. A. Gogol

The Bonch-Bruevich Saint-Petersburg State University of Telecommunications

Email: agogol@sut.ru
ORCID iD: 0000-0003-1972-4124
SPIN-code: 2002-9651

References

  1. Грицкевич И.Ю., Ерганжиев Н.А. Алгоритм адаптивного контрастирования с учетом локальных сюжетных осо-бенностей изображения // V Международная научно-техническая конференция, посвященная 140-летию со дня рождения выдающегося физика и создателя первой русской усилительной радиолампы Н.Д. Папалекси «Актуальные проблемы радио- и кинотехнологий» (Санкт-Петербург, Россия, 24–25 ноября 2020). СПб.: Санкт-Петербургский государственный институт кино и телевидения, 2021. С. 36−40. EDN:DNBFGB
  2. Гонсалес Р., Вудс Р. Цифровая обработка изображений. М.: Техносфера, 2006. 1072 с.
  3. Красильников Н.Н. Цифровая обработка 2D- и 3D-изображений. СПб.: БХВ-Петербург, 2011. 608 с.
  4. Сифоров В.И., Ярославский Л.П. Адаптивные методы обработки изображений. М.: Наука, 1988. 248 с.
  5. Начаров Д.В. Метод контрастирования изображений средствами модифицированного S-образного преобразования яркости // Вестник Воронежского государственного технического университета. 2023. Т. 19. № 2. С. 94–102. doi: 10.36622/VSTU.2023.19.2.014. EDN:XEUQGW
  6. Умбиталиев А.А., Цыцулин А.К., Левко Г.В., Пятков В.В., Кузичкин А.В., Дворников С.В. и др. Теория и практика космического телевидения. СПб: АО «НИИ телевидения», 2017.
  7. Suckling J., Parker J., Dance D., Astley S., Hutt I., Boggis C., et al. The mammographic Image Analysis Society Digital Mammogram Database // Exerpta Medica. International Congress Series. 1994. Vol. 1069. PP. 375−378.
  8. Van Ginneken B., Romeny B.M.T.H. Computer-aided diagnosis in chest radiography: a survey // IEEE Transactions on Medical Imaging. 1998. Vol. 20. Iss. 12. PP. 1228−1241. doi: 10.1109/42.974918
  9. Karssemeijer N., Otten J.D.M., Rijken H., Holland R. Computer aided detection of masses in mammograms as decision support // IEEE Transactions on Medical Imaging. 1993. Vol. 12. Iss. 4. PP. 608−615.
  10. Wang Z., Wu G., Bovik A.C. Reduced and No-Reference Image Quality Assessment // IEEE Signal Processing Magazine. 2011. Vol. 28. Iss. 6. PP. 29−40. doi: 10.1109/MSP.2011.942471
  11. Seshadrinathan K., Bovik A.C. Video Quality Assessment // In: Essential Guide to Video Processing. New York: Academic, 2009.
  12. Bovik A.C., Wang Z. Modern Image Quality Assessment. New York: Morgan and Claypool, 2006.
  13. Sheikh H.R., Bovik A.C., De Veciana G. An information fidelity criterion for image quality assessment using natural scene statistics // IEEE Transactions on Image Processing. 2005. Vol. 14. Iss. 12. PP. 2117–2128. doi: 10.1109/TIP.2005.859389
  14. Rec. ITU-R BT.500-11 (2002) Methodology for subjective assessment of the quality of television pictures.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».