A Method for Routing Traffic in a Three-Dimensional High-Density IoT Network Using Gray Relational Analysis
- Authors: Marochkina A.V.1, Paramonov A.I.1
-
Affiliations:
- The Bonch-Bruevich Saint Petersburg State University of Telecommunications
- Issue: Vol 9, No 4 (2023)
- Pages: 75-85
- Section: Articles
- URL: https://ogarev-online.ru/1813-324X/article/view/254388
- DOI: https://doi.org/10.31854/1813-324X-2023-9-4-75-85
- ID: 254388
Cite item
Full Text
Abstract
Statement of the problem: the development of the infocommunication system is accompanied by the development of communication technologies and services. The general trends of this process are expressed in three main directions: the growth of throughput, reducing the delay in data delivery and mass communications. The latter is characterized by the development of the Internet of Things (IoT). IoT networks are built using various technologies. A large number of connected devices requires the use of new approaches to modeling and methods for building and managing such networks. To model networks with a high density of devices, it is often not enough to use flat models, but you have to resort to building models in three-dimensional space. For the functioning of networks with a large number of nodes, effective methods for choosing their structure are needed, such as choosing head nodes, clustering, and choosing traffic delivery routes. The task of routing is a classic task of building a logical structure of a communication network, however, in conditions of high density networks, it is necessary to use additional opportunities to increase the efficiency of its solution. Classical routing methods and algorithms operate, as a rule, with one selection criterion, which may not be an effective solution in such conditions. In high-density IoT wireless networks, more parameters must be taken into account, since the quality of the route in them depends on many factors. Thus, to improve the efficiency of IoT networks, it is important to develop a routing method according to a number of criteria. This problem is the subject of the present work. The aim of the work is to develop a method for multi-criteria traffic routing in a high-density IoT network. To achieve the goal, the paper proposes an approach to the use of Gray Relational Analysis, which makes it possible to effectively solve the problem of multi-criteria route optimization, including with a small amount of initial data. The object of the study is the Internet of Things network. The subject of the study is the multi-criteria routing method implemented using Gray Relational Analysis. The results of simulation modeling showed the effectiveness of the proposed method in comparison with the methods of single-criteria route selection. The method used is the method of Gray Relational Analysis, which allows solving problems of multicriteria optimization. The novelty of the work lies in the proposed method of applying Gray Relational Analysis to solve a multicriteria routing problem in a high-density IoT network. The result of the work is a method of applying Gray Relational Analysis in the problem of multi-criteria traffic routing in a high-density IoT network. Theoretical/Practical significance. The theoretical significance of the obtained results lies in the description of a new method of applying Gray Relational Analysis in the routing problem and confirmation of its effectiveness by simulation results. The practical significance lies in the fact that this method can be used in traffic routing protocols in high-density IoT networks.
About the authors
A. V. Marochkina
The Bonch-Bruevich Saint Petersburg State University of Telecommunications
Email: anastasiy1996@mail.ru
ORCID iD: 0000-0001-6446-2237
A. I. Paramonov
The Bonch-Bruevich Saint Petersburg State University of Telecommunications
Email: alex-in-spb@yandex.ru
ORCID iD: 0000-0002-4104-3504
References
- Кучерявый А.Е. Интернет вещей // Электросвязь. 2013. № 1. С. 21‒24.
- Кучерявый А.Е., Парамонов А.И., Маколкина М.А., Мутханна А.С.А., Выборнова А.И., Дунайцев Р.А. и др. Трехмерные многослойные гетерогенные сверхплотные сети // Информационные технологии и телекоммуникации. 2022. Т. 10. № 3. С. 1‒12. doi: 10.31854/2307-1303-2021-10- 3-1-12
- Марочкина А.В. Моделирование и кластеризация трехмерной сети интернета вещей с применением метода оценки фрактальной размерности // Электросвязь. 2023. № 6. С. 60‒66. doi: 10.34832/ELSV.2023.43.6.008
- Олифер В.Г., Олифер Н.А. Компьютерные сети. Принципы, технологии, протоколы. СПб.: Питер, 2016. 992 с.
- RFC 3626. Optimized Link State Routing Protocol (OLSR). Network Working Group. October, 2003.
- RFC 3561. Ad hoc On-Demand Distance Vector (AODV) Routing. Network Working Group. July, 2003.
- Бушеленков С.Н., Парамонов А.И. Анализ и формирование структуры сети интернета вещей на основе моделей решеток // Электросвязь. 2021. № 7. С. 23‒28. doi: 10.34832/ELSV.2021.20.7.002
- Jacquet P., Muhlethaler P., Clausen T., Laouiti A., Qayyum A., Viennot L. Optimized link state routing protocol for ad hoc networks // Proceedings of the IEEE International Multi Topic Conference on Technology for the 21st Century (IEEE INMIC 2001, Lahore, Pakistan, 30 December 2001). IEEE Press, 2001. PP. 62‒68. doi: 10.1109/INMIC.2001.995315
- Zhiwei Y., Michael E., Thomas B., Joost K. Multicriteria Inventory Routing by Cooperative Swarms and Evolutionary Algorithms // Proceedings of the International Work-Conference on the Interplay Between Natural and Artificial Computation (IWINAC 2015, Elche, Spain, 1‒5 June 2015). Lecture Notes in Computer Science. Vol. 9108. Cham: Springer, 2015. PP. 127‒137. doi: 10.1007/978-3-319-18833-1_14
- Tilwari V., Maheswar R., Jayarajan P., Sundararajan T.V.P., Hindia M.H.D.N., Dimyati K., et al. MCLMR: A Multicriteria Based Multipath Routing in the Mobile Ad Hoc Networks // Wireless Personal Communications. 2020. Vol. 112. Iss. 1. PP. 2461–2483. doi: 10.1007/s11277-020-07159-8
- Берж К. Теория графов и ее приложения. М.: ИЛ, 1962. 320 c.
- Кристофидес Н. Теория графов. Алгоритмический подход. М.: Мир, 1978. 432 с.
- Liu S., Yang Y., Forrest J.Y.-L.·Grey Systems Analysis: Methods, Models and Applications. Singapore: Springer, 2022. doi: 10.1007/978-981-19-6160-1
- Patil A.N., Walke G., Mahesh G. Grey Relation Analysis Methodology and its Application // Research Review. 2019. Vol. 4. Iss. 2. PP. 409‒411. doi: 10.5281/zenodo.2578088
- Yang W., Wu Y. A Novel TOPSIS Method Based on Improved Grey Relational Analysis for Multiattribute Decision-Making Problem // Mathematical Problems in Engineering. 2019. Vol. 2019. Article ID 8761681. doi: 10.1155/2019/8761681
- Hsiao S.-W., Lin H.-H., Ko Y.-C. Application of Grey Relational Analysis to Decision-Making during Product Development // Eurasia Journal of Mathematics, Science and Technology Education. 2017. Vol. 13. Iss. 6. PP. 2581‒2600. doi: 10.12973/eurasia.2017.01242a
- Кремер Н.Ш. Теория вероятностей и математическая статистика. М.: Издательство Юрайт, 2023. 538 с.
Supplementary files

