Equivalent Circuits Application of Pin-Diodes and MEMS-Keys in Electrodynamic Modeling Problems

Cover Page

Cite item

Full Text

Abstract

This article studies the possibility of using circuit formats to describe radio components in electrodynamic modeling problems. The study was carried out on the example of a controlled metamaterial in the form of an electromagnetic crystal with SPICE-models of equivalent circuits of pin-diodes and MEMS-keys. Also, the possibility of using Touchstone files as an alternative format for describing radio-electronic components was considered. The obtained results are illustrated by scatter matrix plots, as well as equivalent circuits and SPICE code. Obtained results can be used for the design of structures that combine active nonlinear radio components and microwave devices.

About the authors

E. A. Ishchenko

Voronezh State Technical University

Email: kursk1998@yandex.ru
ORCID iD: 0000-0002-5270-0792

Yu. G. Pasternak

Voronezh State Technical University

Email: pasternakyg@mail.ru
ORCID iD: 0000-0002-2031-5531

V. A. Pendyuein

Research and Development Enterprise “Automated Communication Systems”, JSC

Email: infonpp-acc.ru@yandex.ru
ORCID iD: 0000-0002-4697-5976

D. K. Proskurin

Voronezh State Technical University

Email: pdk@vgasu.vrn.ru
ORCID iD: 0009-0004-0569-6737

S. M. Fedorov

Voronezh State Technical University

Email: fedorov_sm@mail.ru
ORCID iD: 0000-0001-9027-6163

References

  1. Wu Z.-f., Liu J.-b. A new design of MEMS coplanar waveguide phase shifter // Proceedings of the International Applied Computational Electromagnetics Society Symposium ‒ China (ACES, Beijing, China, 29 July‒01 August 2018). IEEE, 2018. doi: 10.23919/ACESS.2018.8669307
  2. Mingle S., Hassoun I., Kamali W. Beam-Steering in Metamaterials Enhancing Gain of Patch Array Antenna Using Phase Shifters for 5G Application // Proceedings of the 18th International Conference on Smart Technologies (IEEE EUROCON 2019, Novi Sad, Serbia, 01‒04 July 2019). IEEE, 2019. doi: 10.1109/EUROCON.2019.8861926
  3. Wu Z.N., Tang W.X., Cui T.J. A beam-steerable metamaterial lens using varactor diodes // Proceedings of the MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP, Suzhou, China, 01‒03 July 2015). IEEE, 2015. doi: 10.1109/IMWS-AMP.2015.7324902
  4. Chaimool S., Hongnara T., Rakluea C., Akkaraekthalin P., Zhao Y. Design of a PIN Diode-Based Reconfigurable Metasurface Antenna for Beam Switching Applications // International Journal of Antennas and Propagation. 2019. Vol. 2019. Article ID 7216324. doi: 10.1155/2019/7216324
  5. Liu B., Lin G., Cui Y., Li R. An Orbital Angular Momentum (OAM) Mode Reconfigurable Antenna for Channel Capacity Improvement and Digital Data Encoding // Scientific Reports. 2017. Vol. 7. Article ID 9852. doi: 10.1038/s41598-017-10364-4
  6. Пастернак Ю.Г., Ищенко Е.А., Пендюрин В.А., Фёдоров С.М. Использование активного метаматериала в качестве интегрированного в волновод фазовращателя // Труды учебных заведений связи. 2021. Т. 7. № 1. С. 54‒62. doi: 10.31854/1813-324X-2021-7-1-54-62
  7. Vladimirescu A. The SPICE Book. John Wiley, 1994. 432 p.
  8. Touchstone File Format Specification. Rev 1.1. EIA/IBIS Open Forum, 2002. 11 p.
  9. The PIN Diode Circuit Designers’: Handbook. Microsemi Corporation, 1998. 137 p.
  10. Ahmad I., Dildar H., Khan W.U.R., Ullah S., Ullah S., Albreem M.A., Alsharif M.H., Uthansakul P. Frequency Reconfigurable Antenna for Multi Standard Wireless and Mobile Communication Systems // Tech Science Press. 2021. Vol. 68. Iss. 2. PP. 2563‒2578. doi: 10.32604/cmc.2021.016813
  11. Casals-Terré J., Pradell L., Heredia J.C., Giacomozzi F., Iannacci J., Contreras A., Ribó M. Enhanced Robustness of a Bridge-Type Rf-Mems Switch for Enabling Applications in 5G and 6G Communications // Sensors. 2022. Vol. 22. Iss. 22. Article ID 8893. doi: 10.3390/s22228893
  12. Gong S., Shen H., Barker N.S. Study of Broadband Cryogenic DC-Contact RF MEMS Switches // IEEE Transactions on Microwave Theory and Techniques. 2009. Vol. 57. Iss. 12. PP. 3442‒3449. doi: 10.1109/TMTT.2009.203387
  13. Авдюшин А.С., Ашихмин А.В., Зеленин И.А., Пастернак Ю.Г., Федоров С.М. Искусственный диэлектрик с синтезируемой поверхностью отражения электромагнитных волн СВЧ диапазона // Радиотехника. 2014. № 6. С. 4‒7.
  14. Авдюшин А.С., Ашихмин А.В., Пастернак Ю.Г., Федоров С.М., Чугуевский В.И. Использование цилиндров с анизотропным характером проводимости для упрощения модели искусственного диэлектрика // Радиотехника. 2014. № 6. С. 100‒104.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».