A model of language and methodological pre-service teachers’ training based on artificial intelligence technologies

Cover Page

Cite item

Full Text

Abstract

Importance. Existing empirical research in the field of integration of artificial intelligence technology in foreign language teaching is devoted to the use of specific technology in teaching types of speech activity, mainly writing. The authors note the wide methodological potential of artificial intelligence technologies in foreign language teaching and use chatbots, voice assistants, intelligent learning systems, corpus technologies to form the foreign language communicative competence of students. However, the analysis of a number of studies has allowed us to conclude that so far the authors have not attempted to design a unified model of language and methodological preservice teachers’ training based on artificial intelligence technologies. The purpose of this work is to design a model of language and methodological pre-service teachers’ training based on artificial intelligence technologies.Research Methods. The present study is related to the study of the context of the integration of artificial intelligence technologies into language education. To achieve the set research goal, theoretical methods were used: the study and analysis of scientific and methodological works on thedesign of methodological models of teaching a foreign language using modern technologies; empirical methods: survey, observation and description of research results; modeling methods.Definition of Concepts. The main concepts in this work are “the model of language and methodological pre-service teachers’ training” and “the competence of a pre-service foreign language teacher in the field of using artificial intelligence technologies”.Results and Discussion. Structurally, the model of language and methodological pre-service teachers’ training based on artificial intelligence technologies is represented by the following components: prerequisites (determining the relevance of designing a learning model), a goalsetting block (setting goals and objectives for developing teaching methods), a theoretical block (determining the theoretical and methodological basis of research), a technological block (determining strategies and teaching methods, selection of the learning content, identification of organizational and pedagogical learning conditions, the choice of optimal organizational forms of learning, the definition of pedagogical tools), the evaluation and performance block (the development of a criterion-based assessment apparatus and the forecast of expected learning outcomes).Conclusion. At this stage, the proposed model reflects the essence of the development of AI technologies and their applicability in a foreign language teaching. The separation of artificial intelligence from a means of learning into a separate subject of the educational process indicates that there is a paradigm shift in the use of new technologies in learning. AI technologies are able to provide high-quality feedback, create additional conditions for language practice, take on daily routine tasks and automate them, thereby shaping the ability of students to engage in their education and self-education throughout their lives. The obtained research results are recommended to be used in the methodology of teaching a foreign language, as well as in the development of private methods of teaching a foreign language using AI technologies.

About the authors

M. N. Evstigneev

Derzhavin Tambov State University

Author for correspondence.
Email: maximevstigneev@bk.ru
ORCID iD: 0000-0003-2664-9134

Cand. Sci. (Education), Associate Professor, Associate Professor of the Linguistics and Linguodidactics Department

33 Internatsionalnaya St., Tambov, 392000, Russian Federation

References

  1. Sysoyev P.V., Filatov E.M., Evstigneev M.N., Polyakov O.G., Evstigneeva I.A., Sorokin D.O. (2024). A matrix of artificial intelligence tools in pre-service foreign language teacher training. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review. Series: Humanities, vol. 29, no. 3, pp. 559-588. (In Russ.) https://doi.org/10.20310/1810-0201-2024-29-3-559-588, https://elibrary.ru/jazkme
  2. Tiv’yaeva I.V., Mikhailova S.V., Kazantseva A.A. (2024). Regulating the use of generative artificial intelligence tools in graduate qualification papers. Vestnik MGPU. Seriya: Filologiya. Teoriya yazyka. Yazykovoe obrazova-nie = MCU Journal of Philology. Theory of Linguistics. Linguistic Education, no. 2 (54), pp. 202-218. (In Russ.) https://doi.org/10.25688/2076-913X.2024.54.2.15, https://elibrary.ru/aagzxz
  3. Sysoyev P.V., Filatov E.M., Sorokin D.O. (2024). Feedback in foreign language teaching: from information technologies to artificial intelligence. Yazyk i kul’tura = Language and Culture, no. 65, pp. 242-261. (In Russ.) https://doi.org/10.17223/19996195/65/11, https://elibrary.ru/plzyov
  4. Sysoyev P.V., Filatov E.M., Khmarenko N.I., Murunov S.S. (2024). Teacher vs Artificial Intelligence: a compar-ison of the quality of feedback provided by a teacher and generative artificial intelligence in assessing students’ creative writing. Perspektivy nauki i obrazovaniya = Perspectives of Science and Education, no. 5 (71), pp. 694-712. (In Russ.) https://doi.org/10.32744/pse.2024.5.41, https://elibrary.ru/xzgvgm
  5. Kasneci E. et al. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, vol. 103, p. 102274. https://doi.org/10.1016/j.lindif.2023.102274
  6. Idapalapati S.R. et al. (2024). AI integration in ELT as a disruptive mechanism. International Journal of Science and Research Archive, vol. 12, no. 1, pp. 922-933. (In Russ.) http://dx.doi.org/10.30574/ijsra.2024.12.1.0941
  7. Khairi F. (2024). Navigating the Five Stages of AI Adoption in Higher Education: A Simplified Guide. URL: https://www.researchgate.net/publication/380120710_Navigating_the_Five_Stages_of_AI_Adopti-on_in_Higher_Education_A_Simplified_Guide (accessed 10.06.2024), http://dx.doi.org/10.13140/ RG.2.2.15679.52641
  8. Avramenko A.P., Akhmedova A.S., Bulanova E.R. (2023). Chatbot technology as a means of forming foreign language grammatical competence in self-study. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review. Series: Humanities, vol. 28, no. 2, pp. 386-394. (In Russ.) https://doi.org/10.20310/1810-0201-2023-28-2-386-394, https://elibrary.ru/abfjqp
  9. Filatov E.M. (2024). Automated assessment of learners’ foreign language essay based on feedback from artificial intelligence. Inostrannye yazyki v shkole = Foreign Languages at School, no. 3, pp. 78-83. (In Russ.) https://elibrary.ru/ngeqsn
  10. Cherkasova E.A. (2023). Formation of grammar skills by means of chatbot application in english classed at technical university. Pedagogicheskii zhurnal = Pedagogical Journal, vol. 13, no. 8-1, pp. 182-190. (In Russ.) https://doi.org/10.34670/AR.2023.79.83.018, https://elibrary.ru/bfppxc
  11. Sorokin D.O. (2024). The use of voice assistants for the development of foreign language oral communication skills. Inostrannye yazyki v shkole = Foreign Languages at School, no. 3, pp. 73-77. (In Russ.) https://elibrary.ru/rfmsmk
  12. Han D. (2020). The effects of voice-based AI chatbots on Korean EFL middle school students’ speaking competence and affective domains. Asia-pacific Journal of Convergent Research Interchange, vol. 6, issue 7, pp. 71-80. http://dx.doi.org/10.47116/apjcri.2020.07.07
  13. Titova S.V. (2024). Technological solutions based on artificial intelligence in teaching foreign languages: an analytical review. Vestnik Moskovskogo universiteta. Seriya. 19. Lingvistika i mezhkul’turnaya kommunikatsiya = Moscow State University Bulletin. Series 19. Linguistics and Intercultural Communication, vol. 27, no. 2, pp. 18-37. (In Russ.) https://doi.org/10.55959/MSU-2074-1588-19-27-2-2, https://elibrary.ru/owsqvg
  14. Titova S.V., Temuryan K.T. (2024). Intelligent learning system for language teaching: types, structure, design principles. Inostrannye yazyki v shkole = Foreign Languages at School, no. 3, pp. 25-32. (In Russ.) https://elibrary.ru/svcmqy
  15. Klochikhin V.V. (2024). Application of AI-based corpora in identifying language patterns and students’ re-search. Inostrannye yazyki v shkole = Foreign Languages at School, no. 3, pp. 39-46. (In Russ.) https://elibrary.ru/jfylhf
  16. Evstigneev M.N., Sysoyev P.V., Evstigneeva I.A. (2023). The competence of a foreign language teacher in the context of the artificial intelligence technologies integration into teaching. Inostrannye yazyki v shkole = Foreign Languages at School, no. 3, pp. 88-96. (In Russ.) https://elibrary.ru/oqzdse
  17. Sysoyev P.V., Evstigneev M.N. (2011). ICT competence in foreign language teachers: definitions of terms and designation of content. Inostrannye yazyki v shkole = Foreign Languages at School, no. 6, pp. 16-20. (In Russ.) https://elibrary.ru/occeij
  18. Evstigneev M.N. (2012). Methodology for the Development of the Competence of a Foreign Language Teacher in the Information and Communication Technologies Field. Moscow, Glossa-Press Publ., 157 p. (In Russ.) https://elibrary.ru/vbzolh
  19. Titova S.V., Samoilenko O.Yu. (2017). Structure of higher educational institution lecturer’s information and communication competence. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review. Series: Humanities, vol. 22, no. 3 (167), pp. 39-48. (In Russ.) https://doi.org/10.20310/1810-0201-2017-22-3(167)-39-48, https://elibrary.ru/yprxkz
  20. Butcher N. (2019). UNESCO ICT Competency Framework for Teachers. New York, UNESCO Institute for In-formation Technologies in Education Publ., 68 p.
  21. Evstigneev M.N., Sysoyev P.V., Evstigneeva I.A. (2023). The competence of a foreign language teacher in the context of the artificial intelligence technologies integration into teaching. Inostrannye yazyki v shkole = Foreign Languages at School, no. 3, pp. 88-96. (In Russ.) https://elibrary.ru/oqzdse
  22. Sysoyev P.V. (2023). Artificial intelligence in education: awareness, readiness and practice of using artificial intelligence technologies in professional activities by university faculty. Vysshee obrazovanie v Rossii = Higher Education in Russia, vol. 32, no. 10, pp. 9-33. (In Russ.) https://doi.org/10.31992/0869-3617-2023-32-10-9-33, https://elibrary.ru/tzytkm
  23. Blauberg I.V., Sadovskii V.N., Yudin E.G. (1970). A systematic approach in modern science. Problems of Me-thodology of Systemic Research. Moscow, Mysl’ Publ., pp. 7-48. (In Russ.)
  24. Khutorskoi A.V. (2017). Methodological foundations for applying the competence approach to designing education. Vysshee obrazovanie v Rossii = Higher Education in Russia, no. 12, pp. 85-91. (In Russ.) https://elibrary.ru/zxjghj
  25. Shchepilova A.V. (2003). A Communicative and Cognitive Approach to Teaching French as a Second Foreign Language: Theoretical Foundations. Moscow, Shkol’naya kniga Publ., 488 p. (In Russ.) https://elibrary.ru/vfbber
  26. Gladkov A.V., Prokhorova M.P., Vaganova O.I. (2018). Personal-activity approach to professional education. Problemy sovremennogo pedagogicheskogo obrazovaniya = Problems of Modern Pedagogical Education, no. 58-3, pp. 77-80. (In Russ.) https://elibrary.ru/ystxuv
  27. Sysoyev P.V. (2024). Principles of teaching a foreign language based on artificial intelligence. Inostrannye yazyki v shkole = Foreign Languages at School, no. 3, pp. 6-17. (In Russ.) https://elibrary.ru/horgdd
  28. Evstigneev M.N. (2024). Principles of foreign language teaching based on artificial intelligence technologies. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review. Series: Humani-ties, vol. 29, no. 2, pp. 309-323. (In Russ.) https://doi.org/10.20310/1810-0201-2024-29-2-309-323, https://elibrary.ru/ygipmo
  29. Sysoyev P.V. (2024). Author’s ethics and AI plagiarism: ways to solve the problem of students violating the rules of author’s ethics when interacting with artificial intelligence tools. Inostrannye yazyki v shkole = Foreign Languages at School, no. 3, pp. 84-89. (In Russ.) https://elibrary.ru/joklxd
  30. Sysoyev P.V., Filatov E.M. (2024). Method of teaching students’ foreign language creative writing based on evaluative feedback from artificial intelligence. Perspektivy nauki i obrazovaniya = Perspectives of Science and Education, no. 1 (67), pp. 115-135. (In Russ.) https://doi.org/10.32744/pse.2024.1.6, https://elibrary.ru/tmstly
  31. Evstigneev M.N. (2024). Planning a foreign language lesson using generative artificial intelligence technologies. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review. Series: Humani-ties, vol. 29, no. 3, pp. 617-634. (In Russ.) https://doi.org/10.20310/1810-0201-2024-29-3-617-634, htps://elibrary.ru/ahylwe
  32. Evstigneev M.N. (2024). Thematic control and criteria-based assessment of foreign language writing skills using artificial intelligence technologies. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review. Series: Humanities, vol. 29, no. 4, pp. (In Russ). 913-926. https://doi.org/10.20310/1810-0201-2024-29-4-913-926

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».