Effects of short peptides on the molecular mechanisms of aging in laboratory primates
- 作者: Trofimova S.V.1, Kuznetsova T.G.2, Trofimov A.V.1,3
-
隶属关系:
- Saint-Petersburg Institute of Bioregulation and Gerontology
- I.P. Pavlov Institute of Physiology, Russian Academy of Sciences
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara
- 期: 卷 23, 编号 6 (2025)
- 页面: 66-75
- 栏目: Reviews
- URL: https://ogarev-online.ru/1728-2918/article/view/373748
- DOI: https://doi.org/10.29296/24999490-2025-06-09
- EDN: https://elibrary.ru/eajulw
- ID: 373748
如何引用文章
详细
Introduction. Short peptides are considered a promising class of geroprotective agents capable of modifying key molecular mechanisms of aging, from epigenetic regulation of gene expression to maintenance of neuroendocrine and antioxidant homeostasis. Laboratory non-human primates represent the closest translational models to humans for preclinical evaluation of geroprotective strategies.
Objective. To systematize and critically analyze current data on the effects of short peptides on the molecular mechanisms of aging in laboratory primates and to discuss the prospects for their use in personalized geroprotective therapy.
Material and methods. This review summarizes the results of experimental studies in various primate species (Macaca mulatta, Microcebus murinus, Callithrix jacchus, Cebus apella) and key publications on molecular aspects of the action of short peptides (pineal, pancreatic, cerebral and others) selected from Russian and international peer-reviewed journals and databases (RSCI, PubMed, Scopus). Particular attention is paid to the work of the Russian school of peptide bioregulation led by Academician V.Kh. Khavinson.
Results. Course administration of short pineal peptides (Epithalamin, Epitalon) in aged monkeys normalizes daily rhythms of melatonin and cortisol secretion, increases the activity of antioxidant enzymes and reduces the intensity of free-radical oxidation. The tripeptide EDR (Pinealon) improves cognitive functions in primates and helps restore neuroimmunoendocrine balance. The tetrapeptide Lys-Glu-Asp-Trp (Pankragen) exerts a pronounced regulatory effect on carbohydrate metabolism by restoring endocrine function of the pancreas. Data are summarized on the ability of short peptides to interact with DNA and chromatin, modulate gene methylation, endonuclease and telomerase activity, and influence telomere length, thereby providing epigenetic correction of age-associated changes.
Conclusion. Short peptides are a promising class of geroprotective molecules acting on key epigenetic and neuroendocrine mechanisms of aging. The use of laboratory primates as a translational model allows extrapolation of experimental data to clinical practice and provides a basis for scientifically grounded personalized programs of peptide-based correction of aging. Further controlled studies using modern molecular biomarkers of aging are required to clarify the long-term efficacy and safety of peptide therapy.
作者简介
Svetlana Trofimova
Saint-Petersburg Institute of Bioregulation and Gerontology
Email: dr.s.trofimova@gmail.com
ORCID iD: 0000-0002-5190-1824
Doctor of Medical Sciences, Professor, Deputy Director
俄罗斯联邦, Dinamo Ave., 3, Saint-Petersburg, 197110Tamara Kuznetsova
I.P. Pavlov Institute of Physiology, Russian Academy of Sciences
Email: dr.tamara.kuznetspva@gmail.com
ORCID iD: 0000-0002-0196-0519
Head of the Anthropoidnik group, Doctor of Biological Sciences
俄罗斯联邦, Makarova Emb., 6, Saint-Petersburg, 199034Alexander Trofimov
Saint-Petersburg Institute of Bioregulation and Gerontology; Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara
编辑信件的主要联系方式.
Email: Alexander.Trofimov@gmail.com
ORCID iD: 0009-0009-9606-524X
Doctor of Biological Sciences, Head of the Laboratory of Molecular Mechanisms of Aging, Department of Biogerontology; employee
俄罗斯联邦, Dinamo Ave., 3, Saint-Petersburg, 197110; Via Luigi Polacchi, 11, 66100, Chieti, Italy参考
- Хавинсон В.Х. и др. Пептиды и старение. СПб.: Наука, 2011. [Khavinson V.Kh. et al. Peptides and aging. Saint Petersburg: Nauka, 2011 (in Russian)].
- Хавинсон В.Х. и др. Механизмы действия пептидов. Бюллетень экспериментальной биологии и медицины. 2013. [Khavinson V.Kh. et al. Mechanisms of peptide action. Bulletin of Experimental Biology and Medicine. 2013 (in Russian)].
- Lau J.L., Dunn M.K. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem. 2018; 26 (10): 2700–7. doi: 10.1016/j.bmc.2017.06.052.
- Rafferty J. et al. Peptide therapeutics and the pharmaceutical industry. Curr Med Chem. 2016; 23 (37): 4231–59.
- Лапин Б.А. Обезьяна как лабораторный двойник человека. М.: Медгиз, 1963. [Lapin B.A. The monkey as a laboratory twin of humans. Moscow: Medgiz, 1963 (in Russian)].
- Sapolsky R.M., Krey L.C., McEwen B.S. The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr Rev. 1986; 7 (3): 284–301.
- Letvin N.L. et al. Preserved CD4+ central memory T cells and survival in vaccinated SIV-challenged monkeys. Science. 1999; 283 (5403): 857–60.
- Brok H.P. et al. Non-human primate models of multiple sclerosis. Immunol Rev. 2001; 183: 173–85.
- Sadoun A. et al. Emerging models for studying brain diseases: lessons from non-human primate models. Mol Psychiatry. 2019; 24 (5): 653–68.
- Tara S. et al. Age-related changes in cognition and brain structure in rhesus monkeys. J. Neurosci. 2005.
- Tigges J. et al. Survival rate and life span of rhesus monkeys at the Yerkes Regional Primate Research Center. Am. J. Primatol. 1988; 15 (3): 263–73.
- Lacreuse A., Herndon J.G. Nonhuman primate models of cognitive aging. In: Animal Models of Human Cognitive Aging. Totowa: Humana Press, 2009; 1–30.
- Бадалян Л.О. Невропатология. М.: Академия, 2000. [Badalyan L.O. Neuropathology. Moscow: Akademiya, 2000 (in Russian)].
- Levy R. Aging-associated cognitive decline. Int Psychogeriatr. 1994; 6 (1): 63–8.
- Herndon J.G. et al. Patterns of cognitive decline in aged rhesus monkeys. Behav Brain Res. 1999; 87 (1): 25–34.
- Peters A. et al. Neurobiological bases of age-related cognitive decline in the rhesus monkey. J. Neuropathol Exp. Neurol. 1996; 55 (8): 861–74.
- Erwin J.M. et al. Reproductive senescence in female rhesus monkeys. Am. J. Primatol. 2001; 55 (1): 39–48.
- Szuhany K.L. Physical activity and cognitive aging. J. Aging Phys Act. 2015; 23 (4): 617–20.
- Чигарова С.Э., Маренин В.Ю. Возрастные изменения памяти. Геронтология. 2017. [Chigarova S.E., Marenin V.Yu. Age-related changes in memory. Gerontology. 2017 (in Russian)].
- Соловьева Е.А. и др. Когнитивные нарушения при старении. Журнал неврологии и психиатрии. 2018. [Solovyeva E.A. et al. Cognitive impairments in aging. Zhurnal Nevrologii i Psikhiatrii. 2018 (in Russian)].
- Anisimov V.N., Khavinson V.Kh. Peptide bioregulation of aging: results and prospects. Biogerontology. 2010; 11 (2): 139–49.
- Khavinson V.Kh. Peptides and ageing. Neuroendocrinol Lett. 2002; 23 (3): 11–144.
- Гончарова Н.Д., Хавинсон В.Х., Лапин Б.А. Регулирующее влияние эпиталона на продукцию мелатонина и кортизола у старых обезьян. Бюлл. экспер. биол. мед. 2001; 131 (4): 466–8. [Goncharova N.D., Khavinson V.Kh., Lapin B.A. Regulatory influence of epithalon on melatonin and cortisol production in aged monkeys. Bulletin of Experimental Biology and Medicine. 2001; 131 (4): 466–8 (in Russian)].
- Коркушко О.В., Шатило В.Б., Писарук А.В. и др. Влияние экзогенного мелатонина на суточный ритм мелатонинобразующей функции эпифиза у людей пожилого возраста. Журн. АМН Украины. 2004; 10 (2): 393–401. [Korkushko O.V., Shatilo V.B., Pisaruk A.V. et al. Effect of exogenous melatonin on circadian rhythm of melatonin-producing function of the pineal gland in elderly subjects. J. of the Academy of Medical Sciences of Ukraine. 2004; 10 (2): 393–401 (in Russian)].
- Слепушкин В.Д., Анисимов В.Н., Хавинсон В.Х. и др. Эпифиз, иммунитет и рак: теоретические и клинические аспекты. Томск: Изд-во Томского ун-та, 1990. [Slepushkin V.D., Anisimov V.N., Khavinson V.Kh. et al. Pineal gland, immunity and cancer: theoretical and clinical aspects. Tomsk: Tomsk University Press, 1990 (in Russian)].
- Hendrick J.C., Crasson M., Hagelstein M.T. et al. Urinary excretion of 6-sulphatoxymelatonin in normal subjects: statistical approach to the influence of age and sex. Ann Endocrinol (Paris). 2002; 63 (1): 3–7.
- Tchekalarova J., Rrushovlieva D., Ivaniva P. et al. The role of melatonin deficiency induced by pinealectomy on motor activity and anxiety responses in young adult, middle-aged and old rats. Behav Brain Funct. 2024; 20 (3): 347–52.
- Анисимов В.Н., Хавинсон В.Х., Заварзина Н.Ю. и др. Влияние пептидных биорегуляторов и мелатонина на показатели биологического возраста и продолжительность жизни мышей. Успехи геронтол. 2000; 4: 97–101. [Anisimov V.N., Khavinson V.Kh., Zavarzina N.Yu. et al. Effect of peptide bioregulators and melatonin on indices of biological age and lifespan in mice. Uspekhi Gerontologii. 2000; 4: 97–101 (in Russian)].
- Гончарова Н.Д., Венгерин А.А., Шмалий А.В., Хавинсон В.Х. Пептидная коррекция возрастных нарушений функции эпифиза у обезьян. Успехи геронтологии. 2003; 11 (12): 121–8. [Goncharova N.D., Vengerin A.A., Shmaliy A.V., Khavinson V.Kh. Peptide correction of age-related disturbances of pineal function in monkeys. Uspekhi Gerontologii. 2003; 11 (12): 121–8 (in Russian)].
- Goncharova N.D., Shmaliy A.V., Bogatyrenko T.N., Koltover V.K. Correlation between activity of antioxidant enzymes and circadian rhythms of corticosteroids in Macaca mulatta monkeys of different age. Exp. Gerontol. 2006; 41: 778–83.
- Кузнецова Т.Г., Голубева И.Ю., Трофимова С.В., Хавинсон В.Х., Шуваев В.Т. Влияние трипептида Пинеалона на реабилитацию когнитивных функций в процессе старения на примере макак-резусов (Macaca mulatta). Вестник Московского университета. Серия XXIII. Антропология. 2019; 1: 62–73. [Kuznetsova T.G., Golubeva I.Yu., Trofimova S.V. et al. Effect of the tripeptide Pinealon on rehabilitation of cognitive functions during aging in rhesus monkeys (Macaca mulatta). Moscow University Anthropology Bulletin. 2019; 1: 62–73 (in Russian)].
- Khavinson V., Linkova N., Kozhevnikova E., Trofimova S. EDR peptide: possible mechanism of gene expression and protein synthesis regulation involved in the pathogenesis of Alzheimer’s disease. Molecules. 2021; 26 (1): 159. doi: 10.3390/molecules26010159.
- Гончарова Н.Д., Иванова Л.Г., Оганян Т.Э., Венгерин А.А., Хавинсон В.Х. Влияние тетрапептида Панкрагена на эндокринную функцию поджелудочной железы у старых обезьян. Успехи геронтол. 2014; 27 (4): 662–7. [Goncharova N.D., Ivanova L.G., Oganyan T.E. et al. Effect of the tetrapeptide Pankragen on endocrine function of the pancreas in aged monkeys. Uspekhi Gerontologii. 2014; 27 (4): 662–7 (in Russian)].
- Goncharova ND, Ermolaeva AM, Chigarova OA, Oganyan TE, Ivanova LG, Timoshenko NV. Individual Features of the Hypothalamic-Pituitary-Thyroid Axis Functioning during Aging in Non-Human Primates. Bull Exp Biol Med. 2023; 175 (4): 497–502. doi: 10.1007/s10517-023-05894-z. Epub 2023 Sep 28. PMID: 37768463.
- Гончарова Н.Д., Венгерин А.А., Лапин Б.А. Эндокринные функции эпифиза и поджелудочной железы при старении. Исследования на обезьянах. Российский физиологический журнал им. И.М. Сеченова. 2004; 90 (8): 86. [Goncharova N.D., Vengerin A.A., Lapin B.A. Endocrine functions of the pineal gland and pancreas in aging: studies in monkeys. Rossiiskii Fiziologicheskii Zhurnal im. I.M. Sechenova. 2004; 90 (8): 86 (in Russian)].
- Goncharova N.D., Vengerin A.A., Khavinson V.Kh., Lapin B.A. Pineal peptides restore the age-related disturbances in hormonal functions of the pineal gland and the pancreas. Exp Gerontol. 2005; 40: 51–7.
- Fedoreyeva L.I., Kireev I.I., Khavinson V.Kh., Vanyushin B.F. Penetration of short fluorescence-labeled peptides into the nucleus in HeLa cells and in vitro specific interaction of the peptides with deoxyribooligonucleotides and DNA. Biochemistry (Mosc). 2011; 76 (11): 1210.
- Khavinson V.Kh., Fedoreeva L.I., Vanyushin B.F. Short peptides modulate the effect of endonucleases of wheat seedling. Dokl Biochem Biophys. 2011; 437: 64.
- Khavinson V.Kh., Fedoreeva L.I., Vanyushin B.F. Site-specific binding of short peptides with DNA modulated eukaryotic endonuclease activity. Bull Exp. Biol. Med. 2011; 151 (1): 66.
- Хавинсон В.Х., Тарновская С.И., Линькова Н.С. и др. Короткие пептиды, проникающие в клетку: модель взаимодействия с промоторными участками генов. Бюллетень экспериментальной биологии и медицины. 2012; 154 (9): 391. [Khavinson V.Kh., Tarnovskaya S.I., Linkova N.S. et al. Cell-penetrating short peptides: a model of interaction with gene promoter regions. Bulletin of Experimental Biology and Medicine. 2012; 154 (9): 391 (in Russian)].
- Линькова Н.С., Трофимов А.В., Дудков А.В. Пептиды эпифиза и коры головного мозга стимулируют дифференцировку полипотентной эмбриональной ткани. Клет. техн. биол. мед. 2011; 2: 97. [Linkova N.S., Trofimov A.V., Dudков A.V. Peptides of the pineal gland and cerebral cortex stimulate differentiation of pluripotent embryonic tissue. Cell Technologies in Biology and Medicine. 2011; 2: 97 (in Russian)].
- Khavinson V.Kh., Linkova N.S., Kvetnoy I.M., Kvetnaya T.V. Peptides: prospects for use in the treatment of COVID-19. Molecules. 2020; 25 (19): 4389. doi: 10.3390/molecules25194389.
- Khavinson V.Kh., Malinin V.V. Gerontological aspects of genome peptide regulation. Basel: Karger, 2005.
- Федореева Л.И., Диловарова Т.А., Ашапкин В.В. и др. Короткие экзогенные пептиды регулируют экспрессию генов семейств CLE, KNOX1 и GRF у Nicotiana tabacum. Биохимия. 2017; 82 (4): 700–9. [Fedoreyeva L.I., Dilovarova T.A., Ashapkin V.V. et al. Short exogenous peptides regulate expression of CLE, KNOX1 and GRF gene families in Nicotiana tabacum. Biochemistry (Mosc). 2017; 82 (4): 700–9 (in Russian)].
- Рыжак Г.А., Малинин В.В., Хавинсон В.Х. Основные научные достижения академика РАН В.Х. Хавинсона: пептиды и старение. Медицинский академический журнал. 2024; 24 (3): 254–66. [Ryzhak G.A., Malinin V.V., Khavinson V.Kh. Major scientific achievements of Academician V.Kh. Khavinson: peptides and aging. Medical Academic J. 2024; 24 (3): 254–66 (in Russian)].
- Хавинсон В.Х., Линькова Н.С., Кветной И.М. и др. Молекулярно-клеточные механизмы пептидной регуляции синтеза мелатонина в культуре пинеалоцитов. Бюллетень экспериментальной биологии и медицины. 2012; 153 (2): 223–6. [Khavinson V.Kh., Linkova N.S., Kvetnoy I.M. et al. Molecular and cellular mechanisms of peptide regulation of melatonin synthesis in pinealocyte culture. Bulletin of Experimental Biology and Medicine. 2012; 153 (2): 223–6 (in Russian)].
- Трофимова С.В. Технологии персонализированной медицины в антивозрастной практике. Пространство Здоровья SpaceHEALTH. 2021. [Trofimova S.V. Personalized medicine technologies in anti-age practice. Prostranstvo Zdorovya SpaceHEALTH. 2021 (in Russian)].
- Khavinson V., Popovich I., Linkova N. et al. Peptide regulation of gene expression: a systematic review. Molecules. 2021; 26 (22): 7053. doi: 10.3390/molecules26227053.
- Фридман Н.В., Линькова Н.С., Полякова В.О. и др. Молекулярные аспекты геропротекторного действия пептида KE в культуре фибробластов кожи человека. Успехи геронтологии. 2017; 30 (5): 698–702. [Fridman N.V., Linkova N.S., Polyakova V.O. et al. Molecular aspects of geroprotective action of KE peptide in human skin fibroblast culture. Uspekhi Gerontologii. 2017; 30 (5): 698–702 (in Russian)].
- Хавинсон В.Х., Григорьев Е.И., Малинин В.В., Рыжак Г.А. Пептид, стимулирующий регенерацию нейронов центральной нервной системы, фармацевтическая композиция на его основе и способ ее применения. Патент РФ № 2445979. 2012. [Khavinson V.Kh., Grigoriev E.I., Malinin V.V., Ryzhak G.A. Peptide stimulating regeneration of central nervous system neurons, pharmaceutical composition based thereon and method of its use. Patent of the Russian Federation No.2445979. 2012 (in Russian)].
- Рубинский А.В., Линькова Н.С., Чалисова Н.И. и др. Эпигенетическая регуляция адаптогенеза при патологии и старении. Успехи геронтологии. 2021; 34 (1): 15–22. [Rubinskii A.V., Linkova N.S., Chalisova N.I. et al. Epigenetic regulation of adaptogenesis in pathology and aging. Uspekhi Gerontologii. 2021; 34 (1): 15–22 (in Russian)].
- Languille S., Blanc S., Blin O. et al. The grey mouse lemur: a non-human primate model for ageing studies. Ageing Res Rev. 2012; 11 (1): 150–62.
- Pifferi F., Terrien J., Marchal J. et al. Caloric restriction increases lifespan but affects brain integrity in grey mouse lemur primates. Commun Biol. 2018; 1: 30.
- Colman R.J., Anderson R.M., Johnson S.C. et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science. 2009; 325 (5937): 201–4.
- Colman R.J., Beasley T.M., Kemnitz J.W. et al. Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat Commun. 2014; 5: 3557.
- Mattison J.A., Colman R.J., Beasley T.M. et al. Caloric restriction improves health and survival of rhesus monkeys. Nat Commun. 2017; 8: 14063.
- Tardif S.D., Mansfield K.G., Ratnam R., Ross C.N., Ziegler T.E. The marmoset as a model of aging and age-related diseases. ILAR J. 2011; 52 (1): 54–65.
- Perry J.M.G., Izard M.K., Fail P.A. Observations on reproduction, hormones, copulation and raising of offspring in captive brown capuchin monkeys (Cebus apella). Primates. 1990; 31 (4): 555–71.
- Farajnia S., Michel S., Deboer T. et al. Evidence for neuronal desynchrony in the aged suprachiasmatic nucleus clock. J. Neurosci. 2012; 32 (17): 5891–9.
- Farajnia S., Deboer T., Rohling J.H.T. et al. Aging of the suprachiasmatic clock. Neuroscientist. 2014; 20 (1): 44–55.
- Hood S., Amir S. The aging clock: circadian rhythms and later life. J. Clin. Invest. 2017; 127 (2): 437–46.
- Turek F.W., Gillette M.U. Melatonin, sleep, and circadian rhythms: rationale for development of specific melatonin agonists. Sleep Med. 2004; 5 (6): 523–32.
- Lockley S.W., Dressman M.A., Licamele L. et al. Tasimelteon for non-24-hour sleep-wake disorder in totally blind people. Lancet. 2015; 386 (10005): 1754–64.
- Schomerus C., Korf H.-W. Mechanisms regulating melatonin synthesis in the mammalian pineal organ. Ann N Y Acad Sci. 2005; 1057: 372–83.
- Korf H.-W., Schomerus C., Stehle J.H. The pineal organ, its hormone melatonin, and the photoneuroendocrine system. Adv Anat Embryol Cell Biol. 1998; 146: 1–100.
- Scheiermann C., Kunisaki Y., Frenette P.S. Circadian control of the immune system. Nat Rev Immunol. 2013; 13 (3): 190–8.
- Scheiermann C., Gibbs J., Ince L., Loudon A. Clocking in to immunity. Nat Rev Immunol. 2018; 18 (7): 423–37.
- Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002; 16 (1): 6–21.
- Bird A. Perceptions of epigenetics. Nature. 2007; 447 (7143): 396–8.
- Jenuwein T., Allis C.D. Translating the histone code. Science. 2001; 293 (5532): 1074–80.
- Bonkowski M.S., Sinclair D.A. Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nat Rev Mol Cell Biol. 2016; 17 (11): 679–90.
- Hubbard B.P., Sinclair D.A. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol Sci. 2014; 35 (3): 146–54.
- Baur J.A., Pearson K.J., Price N.L. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006; 444 (7117): 337–42.
- de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 2005; 19 (18): 2100–10.
- de Lange T. Shelterin-mediated telomere protection. Annu Rev Genet. 2018; 52: 223–47.
- Greider C.W., Blackburn E.H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 1985; 43: 405–13.
- Aubert G., Lansdorp P.M. Telomeres and aging. Physiol Rev. 2008; 88 (2): 557–79.
- Gomes N.M.V., Ryder O.A., Houck M.L. et al. Comparative biology of mammalian telomeres. Aging Cell. 2011; 10 (5): 761–8.
- Yuan X., Larsson C., Xu D. Mechanisms underlying the activation of TERT transcription. Oncogene. 2019; 38 (34): 6172–83.
- López-Otin C., Blasco M.A., Partridge L. et al. The hallmarks of aging. Cell. 2013; 153 (6): 1194–217.
- López-Otin C., Blasco M.A., Partridge L. et al. Hallmarks of aging: an expanding universe. Cell. 2023; 186 (2): 243–78.
- Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013; 14 (10): R115.
- Partridge L., Fuentealba M., Kennedy B.K. The quest to slow ageing through drug discovery. Nat Rev Drug Discov. 2020; 19 (8): 513–32.
- Peters M.J., Joehanes R., Pilling L.C. et al. The transcriptional landscape of age in human peripheral blood. Nat Commun. 2015; 6: 8570.
- Sato K., Asai T.T., Jimi S. Collagen-derived di-peptide, prolylhydroxyproline. Front Cell Dev Biol. 2020; 8: 548975.
- Fontana L., Partridge L., Longo V.D. Extending healthy life span—from yeast to humans. Science. 2010; 328: 321–6.
补充文件
