Molecular markers of the development of posttraumatic stress disorder

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Introduction. Posttraumatic stress disorder (PTSD) is presented as a systemic multilevel metabolic-immuno-psycho-neurological disorder with genetic predisposition and epigenetic influences, which radically changes the approach to its understanding and treatment, taking it far beyond the framework of traditional psychiatry.

Objective: Identification of molecular pathogenesis pathways holds promise for targeted management of aggressive and impulsive behaviors in PTSD. The purpose of this review is to analyze current data on the determination of molecular markers that are promising for the diagnosis of PTSD mechanisms of development.

Material and methods. In preparing the review, sources from international (Scopus, Web of Science, PubMed) and eLIBRARY.ru databases for the period 2015–2025 were used.

Results. The key problem of PTSD is discussed – dysfunction in neural networks that process memory, emotional regulation and are interconnected with neurotransmission. The key role of molecular changes in neurons and astrocytes in the development of neuroinflammation in the cortex and limbic system has been demonstrated. The relationship between glymphatic system dysfunction, impaired metabolite clearance, neuroinflammation and neurodegeneration is emphasized.

Conclusion. Identifying specific molecular biomarkers of PTSD sets the stage for developing accurate prognostic tools, facilitating molecular diagnosis, and ideally tailoring personalized therapies effective for each patient’s unique clinical phenotype.

作者简介

Maria Kolpakova

Federal State Budgetary Scientific Institution I.P. Pavlov Institute of Physiology of the Russian Academy of Sciences

Email: kolpakovame@infran.ru
ORCID iD: 0000-0003-3013-5582

PhD in Physiology Sciences, Associate Professor, Senior Researcher at the Laboratory of Cardiovascular and Lymphatic Systems

俄罗斯联邦, Makarova emb., 6, Saint-Petersburg, 199034

Sergey Pyanzin

O-TRI Medical Center

编辑信件的主要联系方式.
Email: pyanzin@inbox.ru
ORCID iD: 0009-0001-3835-6665

PhD in Neurology Sciences, Chief Medical Officer

俄罗斯联邦, Shpalernaya str., 34, Saint-Petersburg, 191123

参考

  1. Pace-Schott E.F., Germain A., Milad M.R. Sleep and REM sleep disturbance in the pathophysiology of PTSD: the role of extinction memory. Biol. Mood. Anxiety. Disord. 2015; 29 (5): 3. doi: 10.1186/s13587-015-0018-9.
  2. Ressler K.J., Berretta S., Bolshakov V.Y., Rosso I.M., Meloni E.G., Rauch S.L., Carlezon W.A. Jr. Post-traumatic stress disorder: clinical and translational neuroscience from cells to circuits. Nat. Rev. Neurol. 2022; 18 (5): 273–88. doi: 10.1038/s41582-022-00635-8.
  3. Siskind D.J., Sawyer E., Lee I., Lie D.C., Martin-Khan M., Farrington J., Crompton D., Kisely S. The mental health of older persons after human-induced disasters: A Systematic Review and Meta-Analysis of Epidemiological Data. Am. J. Geriatr. Psychiatry. 2016; 24 (5): 379–88. doi: 10.1016/j.jagp.2015.12.010.
  4. Li Y., Li L., Wu J., Zhu Z., Feng X., Qin L., Zhu Y., Sun L., Liu Y., Qiu Z., Duan S., Yu Y.Q. Activation of astrocytes in hippocampus decreases fear memory through adenosine A1receptors. Elife. 2020; 1 (9): e 57155. doi: 10.7554/eLife.57155.
  5. Gottschalk M.G., Domschke K. Novel developments in genetic and epigenetic mechanisms of anxiety. Curr. Opin. Psychiatry. 2016; 29 (1): 32–8. doi: 10.1097/YCO.0000000000000219.
  6. Vinkers C.H., Geuze E., van Rooij S.J.H., Kennis M., Schür R.R. Successful treatment of post-traumatic stress disorder reverses DNA methylation marks. Mol. Psychiatry. 2019; 26: 1264–71. doi: 10.1038/s41380-019-0549-3.
  7. Abe-Higuchi N., Uchida S., Yamagata H., Higuchi F., Hobara T., Hara K., Kobayashi A., Watanabe Y. Hippocampal Sirtuin 1 Signaling Mediates Depression-like Behavior. Biol. Psychiatry. 20161; 80 (11): 815–26. doi: 10.1016/j.biopsych.2016.01.009.
  8. Xu Z., Xiao N., Chen Y., Huang H., Marshall C., Gao J., Cai Z., Wu T., Hu G., Xiao M. Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Aβ accumulation and memory deficits. Mol. Neurodegener. 2015; 2 (10): 58. doi: 10.1186/s13024-015-0056-1.
  9. Wang Y., Balaji V., Kaniyappan S., Krüger L., Irsen S., Tepper K., Chandupatla R., Maetzler W., Schneider A., Mandelkow E., Mandelkow E.M. The release and trans-synaptic transmission of Tau via exosomes. Mol. Neurodegener. 2017; 13: 12–5. doi: 10.1186/s13024-016-0143-y.
  10. Uysal M., Ceylan M.F., Hesapçioğlu S.T. Elevated neuron specific enolase levels in post-traumatic stress disorder. Eur. J. Pediatr. 2024; 25 (184): 1–41. doi: 10.1007/s00431-024-05889-6.
  11. Aykac A., Şehirli A., Gören M.Z. Evaluation of the Effect of Prazosin Treatment on α-2c adrenoceptor and apoptosis protein levels in the Predator Scent-Induced rat model of post-traumatic stress disorder. J. Mol. Neurosci. 2020. doi: 10.1007/s12031-020-01518-7
  12. Watson P. PTSD as a public Mental Health Priority. Curr. Psychiatry. Rep. 2019; 21. doi: 10.1007/s11920-019-1032-1
  13. Astill Wright L., Sijbrandij M., Sinnerton R., Lewis C., Roberts N.P., Bisson J.I. Pharmacological prevention and early treatment of post-traumatic stress disorder and acute stress disorder: a systematic review and meta-analysis. Transl. Psychiatry. 2019; 9 (1):334. doi: 10.1038/s41398-019-0673-5.
  14. Arditte Hall K.A., DeLane S.E., Anderson G.M., Lago T.R., Shor R., Wang W., Rasmusson A.M., Pineles S.L. Plasma gamma-aminobutyric acid (GABA) levels and posttraumatic stress disorder symptoms in trauma-exposed women: a preliminary report. Psychopharmacology (Berl). 2021; 238 (6): 1541–52. doi: 10.1007/s00213-021-05785-z.
  15. Cisler J.M., Privratsky A.A., Sartin-Tarm A., Sellnow K., Ross M., Weaver S., Hahn E., Herringa R.J., James G.A., Kilts C.D. L-DOPA and consolidation of fear extinction learning among women with posttraumatic stress disorder. Transl. Psychiatry. 2020; 15; 10 (1): 287. doi: 10.1038/s41398-020-00975-3.
  16. Pineles S.L., Nillni Y.I., Pinna G., Webb A., Arditte Hall K.A., Fonda J.R., Irvine J., King M.W., Hauger R.L., Resick P.A., Orr S.P., Rasmusson A.M. Associations between PTSD-Related extinction retention deficits in women and plasma steroids that modulate brain GABAA and NMDA receptor activity. Neurobiol. Stress. 2020; 13: 100225. doi: 10.1016/j.ynstr.2020.100225.
  17. Pinna G. Allopregnanolone (1938-2019): A trajectory of 80 years of outstanding scientific achievements. Neurobiol. Stress. 2020; 13: 100246. doi: 10.1016/j.ynstr.2020.100246.
  18. Locci A., Pinna G. Social isolation as a promising animal model of PTSD comorbid suicide: neurosteroids and cannabinoids as possible treatment options. Prog Neuropsychopharmacol.Biol. Psychiatry. 2019; 8 (92): 243–59. doi: 10.1016/j.pnpbp.2018.12.014.
  19. Flory J.D., Yehuda R. Comorbidity between post-traumatic stress disorder and major depressive disorder: alternative explanations and treatment considerations. Dialogues Clin. Neurosci. 2015; 17 (2): 141–50. doi: 10.31887/DCNS.2015.17.2/jflory.
  20. de Moraes Costa G., Zanatta F.B., Ziegelmann P.K., Soares Barros A.J., Mello C.F. Pharmacological treatments for adults with post-traumatic stress disorder: A network meta-analysis of comparative efficacy and acceptability. J. Psychiatr. Res. 2020; 130: 412–20. doi: 10.1016/j.jpsychires.2020.07.046.
  21. Raber J., Arzy S., Bertolus J.B, Depue B., Haas H.E., Hofmann S.G., Kangas M., Kensinger E., Lowry C.A., Marusak H.A., Minnier J., Mouly A.M., Mühlberger A., Norrholm S.D., Peltonen K., Pinna G., Rabinak C., Shiban Y., Soreq H., van der Kooij M.A., Lowe L., Weingast L.T., Yamashita P., Boutros S.W. Current understanding of fear learning and memory in humans and animal models and the value of a linguistic approach for analyzing fear learning and memory in humans. Neurosci. Biobehav. Rev. 2019; 105: 136–77. doi: 10.1016/j.neubiorev.2019.03.015.
  22. Lee D.J., Schnitzlein C.W., Wolf J.P., Vythilingam M., Rasmusson A.M., Hoge C.W. Psychotherapy versus pharmacotherapy for posttraumatic stress disorder: systemic review and meta-analysis to determine first-line treatments. Depress. Anxiety. 2016; 33 (9): 792–806. doi: 10.1002/da.22511.
  23. Ulmer C.S., Hall M.H., Dennis P.A., Beckham J.C., Germain A. Posttraumatic stress disorder diagnosis is associated with reduced parasympathetic activity during sleep in US veterans and military service members of the Iraq and Afghanistan wars. Sleep. 2018; 1; 41 (12): zsy174. doi: 10.1093/sleep/zsy174.
  24. Prajapati S.K., Krishnamurthy S. Development and treatment of cognitive inflexibility in sub-chronic stress–re-stress (SRS) model of PTSD. Pharmacol. Rep. 2021; 73: 464–79. doi: 10.1007/s43440-020-00198-9
  25. Zhang Y., Ren R., Sanford L.D., Yang L., Zhou J., Zhang J., Wing Y.K., Shi J., Lu L., Tang X. Sleep in posttraumatic stress disorder: A systematic review and meta-analysis of polysomnographic findings. Sleep Med. Rev. 2019; 48: 101210. doi: 10.1016/j.smrv.2019.08.004.
  26. Feemster J.C., Smith K.L., McCarter S.J., St Louis E.K. Trauma-Associated Sleep Disorder: A Posttraumatic Stress/REM Sleep Behavior Disorder Mash-Up? J. Clin. Sleep Med. 2019; 15; 15 (2): 345–9. doi: 10.5664/jcsm.7642.
  27. Ma L., Li X., Zhang Y. Post-traumatic stress disorder, attention deficit and hyperactivity disorder, and 24 gastrointestinal diseases: Evidence from Mendelian randomization analysis. Medicine (Baltimore). 2025; 16; 104 (20): e42423. doi: 10.1097/MD.0000000000042423.
  28. Hwang A., Skarica M., Xu S., Coudriet J., Lee C.Y., Lin L., Terwilliger R., Sliby A.N., Wang J., Nguyen T., Li H., Wu M., Dai Y., Duan Z., Srinivasan S.S., Zhang X., Lin Y., Cruz D., Deans P.J.M.; Traumatic Stress Brain Research Group; Huber B.R., Levey D., Glausier J.R., Lewis D.A., Gelernter J., Holtzheimer P.E., Friedman M.J., Gerstein M., Sestan N., Brennand K.J., Xu K., Zhao H., Krystal J.H., Young K.A., Williamson D.E., Che A., Zhang J., Girgenti M.J. Single-cell transcriptomic and chromatin dynamics of the human brain in PTSD. Nature. 2025; 643 (8072): 744–54. doi: 10.1038/s41586-025-09083-y.
  29. Saur L., Baptista P.P., Bagatini P.B., Neves L.T., de Oliveira R.M., Vaz S.P., Ferreira K., Machado S.A., Mestriner R.G., Xavier L.L. Experimental Post-traumatic Stress Disorder Decreases Astrocyte Density and Changes Astrocytic Polarity in the CA1 Hippocampus of Male Rats. Neurochem. Res. 2016; 41 (4): 892–904. doi: 10.1007/s11064-015-1770-3.
  30. De Bellis M, Pisani F, Mola MG, Rosito S, Simone L, Buccoliero C, Trojano M, Nicchia GP, Svelto M, Frigeri A. Translational readthrough generates new astrocyte AQP4 isoforms that modulate supramolecular clustering, glial endfeet localization, and water transport. Glia. 2017; 65 (5): 790–803. doi: 10.1002/glia.23126.
  31. Barichello T., Generoso J.S., Singer M., Dal-Pizzol F. Biomarkers for sepsis: more than just fever and leukocytosis-a narrative review. Crit. Care. 2022; 6; 26 (1): 14. doi: 10.1186/s13054-021-03862-5.
  32. Shields G.S., Spahr C.M., Slavich G.M. Psychosocial Interventions and Immune System Function: A Systematic Review and Meta-analysis of Randomized Clinical Trials. JAMA Psychiatry. 2020 1; 77 (10): 1031–43. doi: 10.1001/jamapsychiatry.2020.0431.
  33. Lopresti A.L. Cognitive behaviour therapy and inflammation: A systematic review of its relationship and the potential implications for the treatment of depression. Aust. N Z J. Psychiatry. 2017; 51 (6): 565–82. doi: 10.1177/0004867417701996.
  34. Romero-Sanchiz P., Nogueira-Arjona R., Araos P, Serrano A., Barrios V., Argente J., Garcia-Marchena N., Lopez-Tellez A., Rodriguez-Moreno S., Mayoral F., Pavón F.J., Fonseca F.R. Variation in chemokines plasma concentrations in primary care depressed patients associated with Internet-based cognitive-behavioral therapy. Sci. Rep. 2020; 23; 10 (1): 1078. doi: 10.1038/s41598-020-57967-y.
  35. Aspelund A., Antila S., Proulx S.T., Karlsen T.V., Karaman S., Detmar M., Wiig H., Alitalo K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 2015; 29; 212 (7): 991–9. doi: 10.1084/jem.20142290.
  36. Milanak M.E., Zuromski K.L., Cero I., Wilkerson A.K., Resnick H.S., Kilpatrick D.G. Traumatic Event Exposure, Posttraumatic Stress Disorder, and Sleep Disturbances in a National Sample of U.S. Adults. J. Trauma. Stress. 2019; 32 (1): 14–22. doi: 10.1002/jts.22360.

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).