Expression of immune checkpoints by tumor microenvironment Т-lymphocytes in colon cancer

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The study of immune checkpoint expression by tumor microenvironment T-lymphocytes is necessary for understanding the pathophysiological mechanisms of tumor immunosuppression, as well as for the development of new methods of targeted therapy for colorectal cancer (CRC).

Objective. To study the expression of immune checkpoints by T-lymphocytes in the tumor microenvironment of patients with colon cancer.

Material and methods. The level of expression of immune checkpoints (CTLA-4, PD-1, TIM-3) by tumor microenvironment T-lymphocytes in 105 patients with stage III colorectal cancer was studied using flow cytometry. The control group consisted of 75 patients with non-neoplastic diseases of the colon.

Results. In patients with CRC, the expression of the co-inhibitory protein CTLA-4 on T-helpers increases by 5.5 times and on cytotoxic T-lymphocytes of the tumor microenvironment by 1.9 times. The level of PD-1 expression by CD4-positive T-lymphocytes in the group of patients with CRC exceeds the similar indicator in the control group by 1.8 times. In CRC, the relative content of CD8+TIM-3+ lymphocytes in the tumor microenvironment is 2.5 times higher than the similar indicator in the control group. A statistically significant threshold for exceeding the level of CTLA-4, PD-1 and TIM-3 protein expression on the surface of T-lymphocytes of the tumor microenvironment in colorectal cancer relative to the control group was established. For the CTLA-4 protein, this indicator was 14.7% or more on T-helpers, for the PD-1 molecule – more than 41.9% on CD4-positive lymphocytes and TIM-3+ – more than 6.1% on cytotoxic T-lymphocytes.

Conclusion. In patients with colon cancer, the expression of the co-inhibitory protein CTLA-4 on the surface of both T-helpers and cytotoxic T-lymphocytes, the PD-1 molecule on CD4-positive cells and TIM-3 on CD8+ lymphocyte increases in the primary tumor site.

Авторлар туралы

Victoria Kryukova

Chita State Medical Academy

Email: oigen72@yandex.ru
ORCID iD: 0009-0008-2228-3351

Associate Professor of the Department of Hospital Surgery with a Course in Pediatric Surgery, Candidate of Medical Sciences

Ресей, Gorky St. 39a, Chita, 672000

Viktor Tsepelev

Chita State Medical Academy

Email: viktorcepelev@mail.ru
ORCID iD: 0000-0002-2166-5154

Head of the Department of Hospital Surgery with a Course in Pediatric Surgery, Doctor of Medical Sciences, Professor

Ресей, Gorky St. 39a, Chita, 672000

Pavel Tereshkov

Chita State Medical Academy

Хат алмасуға жауапты Автор.
Email: tpp6915@mail.ru
ORCID iD: 0000-0002-8601-3499

Head of the Laboratory of Experimental and Clinical Biochemistry and Immunology, Research Institute of Molecular Medicine, Candidate of Medical Sciences

Ресей, Gorky St. 39a, Chita, 672000

Әдебиет тізімі

  1. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2021; 71 (3): 209–49.
  2. Carlino M.S., Larkin J., Long G.V. Immune checkpoint inhibitors in melanoma. The Lancet. 2021; 398 (10304): 1002–14.
  3. Xie Y.H., Chen Y.X., Fang J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal transduction and targeted therapy. 2020; 5 (1): 1–30. DOI https://doi.org/ 10.1038/s41392-020-0116-z
  4. Zhang Y., Zheng J. Functions of immune checkpoint molecules beyond immune evasion. Regulation of cancer immune checkpoints: molecular and cellular mechanisms and therapy. 2020: 01–226.
  5. Четверяков А.В., Цепелев В.Л. Уровень коингибирующих иммунных контрольных точек в ткани опухоли у пациентов с новообразованиями толстой кишки. Молекулярная медицина. 2023; 21 (1): 56–60. [Chetveryakov A.V., Tsepelev V.L. Level of co-inhibitory immune checkpoints in tumor tissue in patients with colon neoplasms. Molecular Medicine. 2023; 21 (1): 56–60 (in Russian)].
  6. Четверяков А.В., Цепелев В.Л. Концентрация коингибирующих иммунных контрольных точек и их лигандов в крови у пациентов с опухолью толстой кишки. Патологическая физиология и экспериментальная терапия. 2023; 67 (1): 56–62. [Chetveryakov A.V., Tsepelev V.L. Concentration of co-inhibitory immune checkpoints and their ligands in the blood of patients with colon tumor. Pathological physiology and experimental therapy. 2023; 67 (1): 56–62 (in Russian)].
  7. Zheng Z., Wieder T., Mauerer B., Schäfer L., Kesselring R., Braumüller H. T Cells in Colorectal Cancer: Unravelling the Function of Different T Cell Subsets in the Tumor Microenvironment. Int. J. Mol. Sci. 2023; 24 (14): 11673. https://doi.org/ 10.3390/ijms241411673
  8. Кудрявцев И.В., Борисов А.Г., Кробинец И.И., Савченко А.А., Серебрякова М.К. Определение основных субпопуляций цитотоксических Т-лимфоцитов методом многоцветной проточной цитометрии. Медицинская иммунология. 2015; 17 (6): 525–38. [Kudryavtsev I.V., Borisov A.G., Krobinets I.I., Savchenko A.A., Serebryakova M.K. Determination of the main subpopulations of cytotoxic T-lymphocytes by multicolor flow cytometry. Medical Immunology. 2015; 17 (6): 525–38 (in Russian)].
  9. Мудров В.А. Алгоритм применения roc-анализа в биомедицинских исследованиях с помощью пакета программ SPSS. Забайкальский медицинский вестник. 2021; 1: 148–53. https://doi.org/10.52485/19986173_2021_1_148 [Mudrov V.A. Algorithm for applying roc-analysis in biomedical research using the SPSS software package. Transbaikal Medical Bulletin. 2021; 1: 148–53. https://doi.org/10.52485/19986173_2021_1_148 (in Russian)].
  10. Van Coillie S., Wiernicki B., Xu J. Molecular and cellular functions of CTLA-4. Regulation of Cancer Immune Checkpoints: Molecular and Cellular Mechanisms and Therapy. 2020: 7–32.
  11. Канунова Т.А., Макарова Ю.А., Белова Л.А., Шамрова Е.А. Патофизиологические механизмы использования ингибиторов контрольных точек в регуляции противоопухолевого иммунного ответа Научное обозрение. Медицинские науки. 2020; 4: 33–7. [Kanunova T.A., Makarova Yu.A., Belova L.A., Shamrova E.A. Pathophysiological mechanisms of the use of checkpoint inhibitors in the regulation of antitumor immune response Scientific review. Medical sciences. 2020; 4: 33–7 (in Russian)].
  12. Pauken K.E., Torchia J.A., Chaudhri A., Sharpe A.H., Freeman, G.J. Emerging concepts in PD-1 checkpoint biology. In Seminars in immunology. 2021; 52: 101480.
  13. Zhang H., Dai Z., Wu W., Wang Z., Zhang N., Zhang L., Cheng Q. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. Journal of Experimental & Clinical Cancer Research. 2021; 40 (1): 184.
  14. Han Y., Liu D., Li L. PD-1/PD-L1 pathway: current researches in cancer. American journal of cancer research. 2020; 10 (3): 727.
  15. Acharya N., Sabatos-Peyton C., Anderson A.C. Tim-3 finds its place in the cancer immunotherapy landscape. Journal for immunotherapy of cancer. 2020: 8 (1).
  16. Joller N., Anderson A.C., Kuchroo V.K. LAG-3, TIM-3, and TIGIT: Distinct functions in immune regulation. Immunity. 2024; 57 (2): 206–22.
  17. Hossain M.A., Liu G., Dai B., Si Y., Yang Q., Wazir J., Yang Y. Reinvigorating exhausted CD8+ cytotoxic T lymphocytes in the tumor microenvironment and current strategies in cancer immunotherapy. Medical Research Reviews. 2021; 41 (1): 156–201.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).