Biomarkers of endothelial damage and their role in predicting the development of sepsis and septic shock

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Introduction. Sepsis is multiple organ dysfunction in response to the generalization of an infectious process. The likelihood of developing sepsis correlates with the value of biochemical parameters, which can serve as prognostic markers. The endothelium, as the structural basis of the circulatory system, is primarily exposed to pathogenetic factors, performing a protective function.

The purpose of this review was to summarize the results of assessing the diagnostic and prognostic effectiveness of molecular markers of endothelial damage in the development of inflammation, sepsis and septic shock.

Material and methods. The literature search was conducted using the databases PubMed/Medline, Elsevier.com., ResearchGate, RSCI/elibrary, over the past ten years.

Results. Using keywords, 215 articles were found and analyzed, from which 70 of the most significant and reliable sources were selected. It was concluded that it is necessary to develop a panel of markers of endothelial damage, which together will provide high reliability and specificity for assessing the risk of developing sepsis and septic shock.

About the authors

Tatyana I. Khomyakova

Research Institute of Human Morphology named after. acad. A.P. Avtsyn Federal State Budgetary Scientific Institution “Russian Scientific Center for Chemistry named after. acad. B.V. Petrovsky»

Email: tatkhom@yandex.ru
ORCID iD: 0000-0003-3451-1952

Senior Researcher of the Laboratory of Immunomorphology of Inflammation

Russian Federation, Moscow

Maksim A. Babaev

FGBNU «RNTsKh im. acad. B.V. Petrovsky»

Email: maxbabaev@mail.ru
ORCID iD: 0000-0002-4288-3791

Chief Researcher of the Department of Cardiac Resuscitation

Russian Federation, Moscow

Elena A. Ponomarenko

Research Institute of Human Morphology named after. acad. A.P. Avtsyn Federal State Budgetary Scientific Institution “Russian Scientific Center for Chemistry named after. acad. B.V. Petrovsky»

Email: ponomarenkoea75@mail.ru
ORCID iD: 0000-0002-9672-7145

Senior Researcher of the Laboratory of Immunomorphology of Inflammation

Russian Federation, Moscow

Yury N. Khomyakov

FBUN Central Research Institute of Epidemiology of Rospotrebnadzor

Author for correspondence.
Email: khomyakovyuri@yandex.ru
ORCID iD: 0000-0003-0540-252X

Head of the Laboratory of Molecular Microbiology and Epidemiology of Mycobacterial Infections

Russian Federation, Moscow

References

  1. Seymour C.W., Gomez H., Chang C.H., Clermont G., Kellum J.A., Kennedy J., Yende S., Angus D.C. Precision medicine for all? Challenges and opportunities for a precision medicine approach to critical illness. Crit Care. 2017; 21 (1): 257. https://doi.org 10.1186/s13054-017-1836-5.
  2. Méndez Hernández R., Ramasco Rueda F. Biomarkers as prognostic predictors and therapeutic guide in critically ill patients: clinical evidence. J. Pers. Med. 2023; 13 (2): 333. https://doi.org 10.3390/jpm13020333.
  3. Joffre J., Hellman J., Ince C., Ait-Oufella H. Endothelial responses in sepsis. Am. J. Respir Crit Care Med. 2020; 202 (3): 361–70. https://doi.org 10.1164/rccm.201910-1911TR.
  4. Jacobi J. The pathophysiology of sepsis-2021 update: Part 1, immunology and coagulopathy leading to endothelial injury. Am. J. Health Syst Pharm. 2022; 79 (5): 329–37. https://doi.org 10.1093/ajhp/zxab380.
  5. Maneta E., Aivalioti E., Tual-Chalot S., EminiVeseli B., Gatsiou A., Stamatelopoulos K., Stellos K. Endothelial dysfunction and immunothrombosis in sepsis. Front Immunol. 2023; 14: 1144229. https://doi.org 10.3389/fimmu.2023.1144229.
  6. Raia L., Zafrani L. Endothelial activation and microcirculatory disorders in sepsis. Front Med (Lausanne). 2022; 9: 907992. https://doi.org10.3389/fmed.2022.907992.
  7. Nishibori M. Novel aspects of sepsis pathophysiology: NETs, plasma glycoproteins, endotheliopathy and COVID-19. J. Pharmacol Sci. 2022; 150 (1): 9–20. https://doi.org 10.1016/j.jphs.2022.06.001.
  8. Baby S., Reljic T., Villalba N., Kumar A., Yuan S.Y. Endothelial glycocalyx-associated molecules as potential serological markers for sepsis-associated encephalopathy: A systematic review and meta-analysis. PLoS One. 2023; 18 (2): e0281941. https://doi.org 10.1371/journal.pone.0281941.
  9. Barichello T., Generoso J.S., Singer M., Dal-Pizzol F. Biomarkers for sepsis: more than just fever and leukocytosis-a narrative review. Crit Care. 2022; 26 (1): 14. https://doi.org 10.1186/s13054-021-03862-5.
  10. Becker B.F., Jacob M., Leipert S., Salmon A.H., Chappell D. Degradation of the endothelial glycocalyx in clinical settings: searching for the sheddases. Br. J. Clin. Pharmacol. 2015; 80 (3): 389–402. https://doi.org: 10.1111/bcp.12629.
  11. Wiesinger A., Peters W., Chappell D., Kentrup D., Reuter S., Pavenstädt H. Nanomechanics of the endothelial glycocalyx in experimental sepsis. PLoS One. 2013; 8 (11): e80905. https://doi.org: 10.1371/journal.pone.0080905.
  12. Barrueta Tenhunen A., van der Heijden J., Dogné S., Flamion B., Weigl W., Frithiof R., Skorup P., Larsson A., Larsson A., Tenhunen J. high-molecular-weight hyaluronan – a potential adjuvant to fluid resuscitation in abdominal sepsis? Shock. 2023; 59 (5): 763–70. https://doi.org: 10.1097/SHK.0000000000002089.
  13. Iba T., Levy J.H. Derangement of the endothelial glycocalyx in sepsis. J. Thromb Haemost. 2019; 17 (2): 283–94 https://doi.org:10.1111/jth.14371.
  14. Fernández-Sarmiento J., Molina C.F., Salazar-Pelaez L.M., Flórez S., Alarcón-Forero L.C., Sarta M., Hernández-Sarmiento R., Villar J.C. Biomarkers of glycocalyx injury and endothelial activation are associated with clinical outcomes in patients with sepsis: a systematic review and meta-analysis. J. Intensive Care Med. 2023; 38 (1): 95–105. https://doi.org: 10.1177/08850666221109186.
  15. Schulz A., Drost C.C., Hesse B., Beul K., Boeckel G.R., Lukasz A., Pavenstädt H., Brand M., Di Marco G.S. The endothelial glycocalyx as a target of excess soluble fms-like tyrosine kinase-1. Int. J. Mol. Sci. 2023; 24 (6): 5380. https://doi.org: 10.3390/ijms24065380.
  16. Yang R., Chen M., Zheng J., Li X., Zhang X. The Role of Heparin and Glycocalyx in Blood-Brain Barrier Dysfunction. Front Immunol. 2021; 12: 754141. https://doi.org: 10.3389/fimmu.2021.754141.
  17. Forero L.C., Sarta M., Hernández-Sarmiento R., Villar J.C. Biomarkers of Glycocalyx Injury and Endothelial Activation are Associated with Clinical Outcomes in Patients with Sepsis: A Systematic Review and Meta-Analysis. J. Intensive Care Med. 2023; 38 (1): 95–105. https://doi.org 10.1177/08850666221109186.
  18. Clark D.V., Banura P., Bandeen-Roche K., Liles W.C., Kain K.C., Scheld W.M., Moss W.J., Jacob S.T. Biomarkers of endothelial activation/dysfunction distinguish sub-groups of Ugandan patients with sepsis and differing mortality risks. JCI Insight. 2019; 5 (10): e127623. https://doi.org: 10.1172/jci.insight.127623.
  19. Gottlieb S.S., Harris K., Todd J., Estis J., Christenson R.H., Torres V. Prognostic significance of active and modified forms of endothelin 1 in patients with heart failure with reduced ejection fraction. Clin. Biochem. 2015; 48 (4–5): 292–6. https://doi.org :10.1016/j.clinbiochem.2014.12.012.
  20. Iijima S. Exchange Transfusion in Neonatal Sepsis: A Narrative Literature Review of Pros and Cons. J. Clin. Med. 2022; 11 (5): 1240. https://doi.org: 10.3390/jcm11051240.
  21. Bomberg H., Bierbach B., Flache S., Wagner I., Gläser L., Groesdonk H.V., Menger M.D., Schäfers H.J. Endothelin and vasopressin influence splanchnic blood flow distribution during and after cardiopulmonary bypass. J. Thorac Cardiovasc Surg. 2013; 145 (2): 539–47. https://doi.org: 10.1016/j.jtcvs.2012.03.014.
  22. Sánchez-Etayo G., Borrat X., Escobar B., Hessheimer A., Rodriguez-Laiz G., Taura P. Effect of intra-abdominal pressure on hepatic microcirculation: implications of the endothelin-1 receptor. J. Dig Dis. 2012; 13 (9): 478–85. https://doi.org: 10.1111/j.1751-2980.2012.00613.x.
  23. Almahayni K., Möckl L. Setting the stage for universal pharmacological targeting of the glycocalyx. Curr. Top. Membr. 2023; 91: 61–88. https://doi.org: 10.1016/bs.ctm.2023.02.004
  24. Flynn R.A., Pedram K., Malaker S.A., Batista P.J., Smith B.A.H., Johnson A.G., George B.M., Majzoub K., Villalta P.W., Carette J.E., Bertozzi C.R. Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell. 2021; 184 (12): 3109–24.e22. https://doi.org: 10.1016/j.cell.2021.04.023.
  25. Anand D., Ray S., Srivastava L.M., Bhargava S. Evolution of serum hyaluronan and syndecan levels in prognosis of sepsis patients. Clin. Biochem. 2016; 49 (10–11): 768–76. https://doi.org 10.1016/j.clinbiochem.2016.02.014.
  26. Hatanaka K., Ito T., Madokoro Y., Kamikokuryo C., Niiyama S., Yamada S., Maruyama I., Kakihana Y. Circulating Syndecan-1 as a predictor of persistent thrombocytopenia and lethal outcome: a population study of patients with suspected sepsis requiring intensive care. Front Cardiovasc Med. 2021; 8: 730553. https://doi.org 10.3389/fcvm.2021.730553.
  27. Nelson A., Berkestedt I., Schmidtchen A., Ljunggren L., Bodelsson M. Increased levels of glycosaminoglycans during septic shock: relation to mortality and the antibacterial actions of plasma. Shock. 2008; 30 (6): 623–7. https://doi.org 10.1097/SHK.0b013e3181777da3.
  28. Sallisalmi M., Tenhunen J., Yang R., Oksala N., Pettilä V. Vascular adhesion protein-1 and syndecan-1 in septic shock. Acta Anaesthesiol Scand. 2012; 56 (3): 316–22. https://doi.org 10.1111/j.1399-6576.2011.02578.x.
  29. Schmidt E.P., Yang Y., Janssen W.J., Gandjeva A., Perez M.J., Barthel L. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med. 2012; 18 (8): 1217–23. https://doi.org 10.1038/nm.2843.
  30. Steppan J., Hofer S., Funke B., Brenner T., Henrich M., Martin E., Weitz J., Hofmann U., Weigand M.A. Sepsis and major abdominal surgery lead to flaking of the endothelial glycocalix. J. Surg Res. 2011; 165 (1): 136–41. https://doi.org 10.1016/j.jss.2009.04.034. Epub 2009 May 20. PMID: 19560161.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».