Synergism of ascorbic acid and RNA interferon inducers in antiviral immunity activation: molecular mechanisms and therapeutic perspectives

Cover Page
  • Authors: Potupchik T.V.1, Alikin Y.S.2, Generalov S.V.3, Evert L.S.4,5, Tymchuk V.I.6, Khalakoeva D.A.7, Abdullaeva S.R.8, Spitsyn A.A.9
  • Affiliations:
    1. Federal State Budgetary Educational Institution of Higher Education “Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky” of the Ministry of Health of the Russian Federation
    2. Scientific and Production Association Evolution of Nature LLC
    3. Federal State Scientific Institution Russian Anti-Plague Research Institute “Microbe” of the Federal Service for Surveillance on Consumer Rights Protection and Human Welfare
    4. Khakass State University named after N.F. Katanov of the Ministry of Science and Higher Education of the Russian Federation
    5. Federal Research Center “Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences”, a separate subdivision – Scientific Research Institute of Medical Problems of the North
    6. Budgetary Healthcare Institution of the Udmurt Republic «City Clinical Hospital No. 6» of the Ministry of Health of the Udmurt Republic
    7. Budgetary Educational Institution of Higher Education «Kabardino-Balkarian State University named after H.M. Berbekov»
    8. Federal State Budgetary Educational Institution of Higher Education «Dagestan State Medical University» of the Ministry of Health of the Russian Federation
    9. LLC «NPO Evolution of Nature»
  • Issue: Vol 23, No 6 (2025)
  • Pages: 76-83
  • Section: Reviews
  • URL: https://ogarev-online.ru/1728-2918/article/view/373749
  • DOI: https://doi.org/10.29296/24999490-2025-06-10
  • EDN: https://elibrary.ru/ecqnlj
  • ID: 373749

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Introduction. Ascorbic acid (vitamin C) is an essential cofactor of numerous enzymatic reactions and possesses pronounced antioxidant properties. Recent years have seen accumulating evidence of its immunomodulatory effects, particularly the ability to potentiate antiviral response. RNA interferon inducers represent a class of immunomodulators that activate innate immunity through pattern recognition receptors. The combination of ascorbic acid with RNA inducers may provide a synergistic effect in activating antiviral defense.

Objective: to systematize current data on molecular mechanisms of immunomodulatory action of ascorbic acid, analyze possible pathways of synergistic interaction between vitamin C and RNA interferon inducers, and evaluate therapeutic potential of combined preparations.

Material and methods. A systematic analysis of scientific literature in PubMed, Scopus, Web of Science, eLibrary databases for 2000–2025 was conducted using key terms: ascorbic acid, vitamin C, interferon inducers, RNA PAMP, innate immunity.

Results. Ascorbic acid is involved in the regulation of innate and adaptive immunity through multiple mechanisms: it serves as a cofactor for the TET and JmjC family of dioxygenases, which regulate epigenetic modifications in immune cells; modulates the activity of the NF-κB and HIF-1α transcription factors; enhances neutrophil phagocytosis and chemotaxis; and supports the function of NK cells and T lymphocytes. Interferon RNA inducers activate TLR3, TLR7/8, RIG-I, and MDA5 receptors, triggering the IRF3/7 and NF-κB cascades with subsequent production of type I interferons. Synergism can be realized through: increased expression of pattern recognition receptors under the influence of ascorbate; potentiation of IRF and NF-κB signaling pathways; protection against oxidative stress induced by activation of innate immunity; optimization of the energy metabolism of immune cells. Combination drugs containing ascorbic acid and RNA components demonstrate more pronounced antiviral activity compared to monocomponents.

Conclusion. The combination of ascorbic acid with RNA interferon inducers represents a rational strategy for enhancing antiviral immunity. Development of combined preparations based on this principle opens prospects for creating effective and safe means of prevention and therapy of viral infections.

About the authors

Tatyana V. Potupchik

Federal State Budgetary Educational Institution of Higher Education “Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky” of the Ministry of Health of the Russian Federation

Email: potupchik_tatyana@mail.ru
ORCID iD: 0000-0003-1133-4447

Candidate of Medical Sciences, Associate Professor, Department of Pharmacology and Clinical Pharmacology with a Postgraduate Course

Russian Federation, 660022, Krasnoyarsk, Partizana Zheleznyaka St., 1

Yuri S. Alikin

Scientific and Production Association Evolution of Nature LLC

Email: alikin@evolprir.ru
ORCID iD: 0009-0009-8273-6348

Doctor of Biological Sciences, Professor, Expert

Russian Federation, Voskhod str., 20/1, office 1.2, Novosibirsk, 630102

Sergey V. Generalov

Federal State Scientific Institution Russian Anti-Plague Research Institute “Microbe” of the Federal Service for Surveillance on Consumer Rights Protection and Human Welfare

Email: svgeneraloff@gmail.com
ORCID iD: 0000-0003-1461-5383

Candidate of Biological Sciences, Leading Researcher

Russian Federation, Saratov, Universitetskaya str., 46, 410005

Lydia S. Evert

Khakass State University named after N.F. Katanov of the Ministry of Science and Higher Education of the Russian Federation; Federal Research Center “Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences”, a separate subdivision – Scientific Research Institute of Medical Problems of the North

Author for correspondence.
Email: lidiya_evert@mail.ru
ORCID iD: 0000-0003-0665-7428

Doctor of Medical Sciences, Professor of the Department of General Professional Disciplines, Medical Institute; Chief Researcher, Clinical Department of Somatic and Mental Health of Children

Russian Federation, Lenin Avenue, 90, Abakan, 655017; 660022, Krasnoyarsk, Partizana Zheleznyaka St., 3G

Valeriya I. Tymchuk

Budgetary Healthcare Institution of the Udmurt Republic «City Clinical Hospital No. 6» of the Ministry of Health of the Udmurt Republic

Email: valeriyatymchuk@yandex.ru
ORCID iD: 0009-0000-1866-0881

Doctor of Medical Prevention

Russian Federation, Truda St., 1, Izhevsk, Udmurt Republic, 426067

Dayana A. Khalakoeva

Budgetary Educational Institution of Higher Education «Kabardino-Balkarian State University named after H.M. Berbekov»

Email: dayana.khalakoeva@mail.ru
ORCID iD: 0009-0007-5730-2762

5th Year Student, Medical Faculty

Russian Federation, Chernyshevsky St., 173, Nalchik, Kabardino-Balkarian Republic, 360004

Snezhana R. Abdullaeva

Federal State Budgetary Educational Institution of Higher Education «Dagestan State Medical University» of the Ministry of Health of the Russian Federation

Email: snejana030203@icloud.com
ORCID iD: 0009-0001-5739-6283

6th Year Student, Medical Faculty

Russian Federation, Lenin Square, 1, Makhachkala, Republic of Dagestan, 367000

Aleksandr A. Spitsyn

LLC «NPO Evolution of Nature»

Email: info@эволюция-природы.рф
ORCID iD: 0009-0005-4900-826X

Chief Research Scientist

Russian Federation, Voskhod str., 20/1, office 1.2, Novosibirsk, Novosibirsk Region, 630102

References

  1. Carr A.C., Maggini S. Vitamin C and immune function. Nutrients. 2017; 9 (11): 1211. doi: 10.3390/nu9111211
  2. Hemilä H., Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev. 2013; 2013 (1): CD000980. doi: 10.1002/14651858.CD000980.pub4
  3. Ang A., Pullar J.M., Currie M.J., Vissers M.C.M. Vitamin C and immune cell function in inflammation and cancer. Biochem Soc Trans. 2018; 46 (5): 1147–59. doi: 10.1042/BST20180169
  4. Rehwinkel J., Gack M.U. RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol. 2020; 20 (9): 537–51. doi: 10.1038/s41577-020-0288-3
  5. Luan X., Wang Y., Yue R., Zhou W. Innate immune responses to RNA: sensing and signaling. Front Immunol. 2024; 15: 1287940. doi: 10.3389/fimmu.2024.1287940
  6. Kato H., Takeuchi O., Sato S. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006; 441 (7089): 101–5. doi: 10.1038/nature04734
  7. Ермолаев В.В., Шимина Г.Г., Аликин Ю.С., Гамалей С.Г., Лебедев Р.Л. Новые препараты иммуномодуляторов на основе РНК для лечения вирусных инфекций. Инновации и продовольственная безопасность. 2023; 42 (4): 78–89. [Ermolaev V.V., Shimina G.G., Alikin Y.S., Gamalei S.G., Lebedev R.L. New RNA-based immunomodulator drugs for the treatment of viral infections. Innovation and food security. 2023; 42 (4): 78–89. doi: 10.31677/inet_fos.2023.4.78 (In Russian)].
  8. Генералов С.В., Перевозников Д.А., Абрамова Е.Г., Никифоров А.К., Спицын А.А., Потупчик Т.В., Шендерович Е.М. Антивирусная активность препарата на основе двухцепочечной РНК против вируса бешенства in vitro. Проблемы биологической, медицинской и фармацевтической химии. 2025; 28 (1): 45–52. [Generalov S.V., Perevoznikov D.A., Abramova E.G., Nikiforov A.K., Spitsyn A.A., Potupchik T.V., Shenderovich E.M. Antiviral activity of a drug based on double-stranded RNA against rabies virus in vitro. Problems of biological, medical and pharmaceutical chemistry. 2025; 28 (1): 45–52. doi: 10.31677/2311-0651-2023-42-4-78-89 (In Russian)].
  9. Потупчик Т.В., Генералов С.В., Акаева А.В., Шаблинская К.С. Новые стратегии постэкспозиционной профилактики бешенства: роль иммуномодулирующих и таргетных молекулярных технологий в персонализированной медицине. Молекулярная медицина. 2025; 23 (5): 49–57. [Potupchik T.V., Generalov S.V., Akaeva A.V., Shablinskaya K.S. Novel strategies for post-exposure rabies prophylaxis: the role of immunomodulatory and targeted molecular technologies in personalized medicine. Molecular medicine. 2025; 23 (5): 49–57. doi: 10.29296/25419218-2025-05-06 (In Russian)].
  10. Vissers M.C.M., Das A.B. Potential mechanisms of action for vitamin C in cancer: Reviewing the evidence. Front Physiol. 2018; 9: 809. doi: 10.3389/fphys.2018.00809
  11. Huijskens M.J., Walczak M., Koller N., Briedé J.J., Senden-Gijsbers B.L.M.G., Schnijderberg M.C., Bos G.M.J. et al. Technical advance: ascorbic acid induces development of double-positive T cells from human hematopoietic stem cells in the absence of stromal cells. J Leukoc Biol. 2014; 96 (6): 1165–75. doi: 10.1189/jlb.1TA0214-121RR
  12. Cimmino L., Dolgalev I., Wang Y., Yoshimi A., Martin G.H., Wang J., Ng V. et al. Restoration of TET2 function blocks aberrant self-renewal and leukemia progression. Cell. 2017; 170 (6): 1079–95. doi: 10.1016/j.cell.2017.07.032
  13. Monfort A., Wutz A. Breathing-in epigenetic change with vitamin C. EMBO Rep. 2013; 14 (4): 337–46. doi: 10.1038/embor.2013.29
  14. Blaschke K., Ebata K.T., Karimi M.M., Zepeda-Martinez, J.A., Goyal P., Mahapatra S., Tam A. et al. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature. 2013; 500 (7461): 222–6. doi: 10.1038/nature12362
  15. Manning J., Mitchell B., Appadurai D.A., Shakya A., Pierce L.J., Wang H., Nganga V. et al. Vitamin C promotes maturation of T-cells. Antioxid Redox Signal. 2013; 19 (17): 2054–67. doi: 10.1089/ars.2012.4988
  16. Carr A.C., McCall C., Frei B. Oxidation of LDL by myeloperoxidase and reactive nitrogen species: reaction pathways and antioxidant protection. Arterioscler Thromb Vasc Biol. 2000; 20 (7): 1716–23. doi: 10.1161/01.atv.20.7.1716
  17. Kawai T., Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011; 34 (5): 637–50. doi: 10.1016/j.immuni.2011.05.006
  18. Alexopoulou L., Holt A.C., Medzhitov R., Flavell R.A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001; 413 (6857): 732–8. doi: 10.1038/35099560
  19. Ren Z., Ding T., Zuo Z., Xu Z., Deng J., Wei Z. Regulation of MAVS expression and signaling function in the antiviral innate immune response. Front Immunol. 2020; 11: 1030. doi: 10.3389/fimmu.2020.01030
  20. Brisse M., Ly H. Comparative structure and function analysis of the RIG-I-like receptors: RIG-I and MDA5. Front Immunol. 2019; 10: 1586. doi: 10.3389/fimmu.2019.01586
  21. Schneider W.M., Chevillotte M.D., Rice C.M. Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol. 2014; 32: 513–45. doi: 10.1146/annurev-immunol-032713-120231
  22. Kayesh M.E.H., Kohara M., Tsukiyama-Kohara K. TLR agonists as vaccine adjuvants in the prevention of viral infections: an overview. Front Microbiol. 2023; 14: 1249718. doi: 10.3389/fmicb.2023.1249718
  23. West A.P., Shadel G.S., Ghosh S. Mitochondria in innate immune responses. Nat Rev Immunol. 2011; 11 (6): 389–402. doi: 10.1038/nri2975
  24. Mills E.L., Kelly B., O’Neill L.A.J. Mitochondria are the powerhouses of immunity. Nat Immunol. 2017; 18 (5): 488–98. doi: 10.1038/ni.3704
  25. Pearce E.L., Pearce E.J. Metabolic pathways in immune cell activation and quiescence. Immunity. 2013; 38 (4): 633–43. doi: 10.1016/j.immuni.2013.04.005
  26. Marik P.E., Khangoora V., Rivera R., Hooper M.H., Catravaset J. Hydrocortisone, vitamin C, and thiamine for the treatment of severe sepsis and septic shock: a retrospective before-after study. Chest. 2017; 151 (6): 1229–38. doi: 10.1016/j.chest.2016.11.036
  27. Fowler A.A., Truwit J.D., Hite R.D., Morris P.E., DeWilde C., Priday A., Fisher B. et al. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: the CITRIS-ALI randomized clinical trial. JAMA. 2019; 322 (13): 1261–70. doi: 10.1001/jama.2019.11825
  28. Hemilä H., Chalker E. Vitamin C can shorten the length of stay in the ICU: a meta-analysis. Nutrients. 2019; 11 (4): 708. doi: 10.3390/nu11040708
  29. Pardi N., Hogan M.J., Porter F.W., Weissman D. mRNA vaccines – a new era in vaccinology. Nat Rev Drug Discov. 2018; 17 (4): 261–79. doi: 10.1038/nrd.2017.243
  30. Schlee M., Hartmann G. Discriminating self from non-self in nucleic acid sensing. Nat Rev Immunol. 2016; 16 (9): 566–80. doi: 10.1038/nri.2016.78

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).