Main ways of the initiation of cancer cell dormancy: TGFβ role
- 作者: Sergeeva E.Y.1,2
-
隶属关系:
- Institution of Higher Education «Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University» of the Ministry of Healthcare of the Russian Federation
- Institution of Higher Education “Siberian Federal University” of the Ministry of Science and Higher Education of the Russian Federation
- 期: 卷 22, 编号 5 (2024)
- 页面: 24-30
- 栏目: Reviews
- URL: https://ogarev-online.ru/1728-2918/article/view/272329
- DOI: https://doi.org/10.29296/24999490-2024-05-03
- ID: 272329
如何引用文章
详细
The development of metastases even long after treatment is one of the most important problems of medicine. There are mechanisms helping cancer cells to survive at various steps of metastasis. The ability of cancer cells to turn into dormant state characterizing of reversible cell cycle blockage is one of such mechanisms. Dormancy is regulated by many factors including TGFβ.
The aim of the review to summarize the information about the mechanisms of dormancy development in primary and secondary sites as well as about the role of TGFβ in cancer cell phenotype regulation and its cooperation with intra- and extracellular factors are supposed to promote dormancy development
Material and methods. The materials are the results of the investigations on the theme of russian and foreign researchers and ours published data over the past 9 years, from 2015 till 2024.
Results. Modern data about the roles of the factors produced by primary tumor and target organ cells in dormancy development are summarized in the article. Dormant phenotype induction can be initiated not only in primary tumor under the influence of hypoxia, pH alterations, inflammation and immune cells regulation etc., but also in the sites of metastasis as a result of the influence of factors produced by primary tumor as well as target organ cells.
Modern data allow to suppose, that TGFβ influencing a number of complicated processes can prevent dormancy development and promote cancer cells to reenter cell cycle.
Conclusion. Further investigation in this field allow a deeper understanding of the mechanisms of the TGFβ influence on dormant cells and will promote the creation of new strategies of anticancer therapy on the basis of TGFβ activity modulation
作者简介
Ekaterina Sergeeva
Institution of Higher Education «Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University» of the Ministry of Healthcare of the Russian Federation; Institution of Higher Education “Siberian Federal University” of the Ministry of Science and Higher Education of the Russian Federation
编辑信件的主要联系方式.
Email: e.yu.sergeeva@mail.ru
ORCID iD: 0000-0002-2089-6022
Doctor of biological sciences, Professor of the Department of pathological physiology FSBEI НЕ Prof. V.F. Voino-Yasenetsky KrasSMU MOH Russia; Professor of the Department of medical biology of FSAEI HE “Siberian Federal University” of the Ministry of Science and Higher Education of the Russian Federation
俄罗斯联邦, Partizana Zheleznyaka str., 1, Krasnoyarsk, 660022; Svobodny pr.,79, Krasnoyarsk 660041参考
- Фефелова Ю.А., Жуков Е.Л., Сергеева Е.Ю., Михайлова А.К. Морфологические особенности экспериментальной меланомы В16 при ограничении калорийности питания. Сибирское медицинское обозрение. 2019; 6: 96–9. doi: 10.20333/2500136-2019-6-96-99 [Fefelova Yu.A., Zhukov E.L., Sergeeva E.Yu., Mihaylova A.K. Morphological features of experimental B16 melanoma in case of food calories limitation. Siberian Medical Review. 2019; 6: 96–9. doi: 10.20333/2500136-2019-6-96-99 (in Russian)]
- Mukherjee A., Bravo-Cordero J.J. Regulation of dormancy during tumor dissemination: the role of the ECM. Cancer Metastasis Rev. 2023; 42 (1): 99–112. doi: 10.1007/s10555-023-10094-2
- Massagué J., Sheppard D. TGF-β signaling in health and disease. Cell. 2023; 186 (19): 4007–37. doi: 10.1016/j.cell.2023.07.036
- Tallón de Lara P., Castañón H., Vermeer M., Núñez N., Silina K., Sobottka B., Urdinez J., Cecconi V., Yagita H., Movahedian Attar F., Hiltbrunner S., Glarner I., Moch H., Tugues S., Becher B., van den Broek M. CD39+PD-1+CD8+ T cells mediate metastatic dormancy in breast cancer. Nat. Commun. 2021; 12 (1): 769. doi: 10.1038/s41467-021-21045-2
- Sergeeva E., Ruksha T., Fefelova Y. Effects of Obesity and Calorie Restriction on Cancer Development. Int. J. Mol. Sci. 2023; 24 (11): 9601. doi: 10.3390/ijms24119601
- Fluegen G., Avivar-Valderas A., Wang Y., Padgen M.R., Williams J.K., Nobre A.R., Calvo V., Cheung J.F., Bravo-Cordero J.J., Entenberg D., Castracane J., Verkhusha V., Keely P.J., Condeelis J., Aguirre-Ghiso J.A. Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nat. Cell Biol. 2017; 19 (2): 120–32. doi: 10.1038/ncb3465
- Ju S., Wang F., Wang Y., Ju S. CSN8 is a key regulator in hypoxia-induced epithelial-mesenchymal transition and dormancy of colorectal cancer cells. Mol. Cancer. 2020; 19 (1): 168. doi: 10.1186/s12943-020-01285-4
- Baldominos P., Barbera-Mourelle A., Barreiro O., Huang Y., Wight A., Cho J.W., Zhao X., Estivill G., Adam I., Sanchez X., McCarthy S., Schaller J., Khan Z., Ruzo A., Pastorello R., Richardson E.T., Dillon D., Montero-Llopis P., Barroso-Sousa R., Forman J., Shukla S.A., Tolaney S.M., Mittendorf E.A., von Andrian U.H., Wucherpfennig K.W., Hemberg M., Agudo J. Quiescent cancer cells resist T cell attack by forming an immunosuppressive niche. Cell. 2022; 185 (10): 1694–1708.e19. doi: 10.1016/j.cell.2022.03.033
- Mallikarjuna P., Raviprakash T.S., Aripaka K., Ljungberg B., Landström M. Interactions between TGF-β type I receptor and hypoxia-inducible factor-α mediates a synergistic crosstalk leading to poor prognosis for patients with clear cell renal cell carcinoma. Cell Cycle. 2019; 18 (17): 2141–56. doi: 10.1080/15384101.2019.1642069
- Heneberg P. Lactic Acidosis in Patients with Solid Cancer. Antioxid. Redox Signal. 2022; 37 (16–18): 1130–52. doi: 10.1089/ars.2021.0267
- Halcrow P., Datta G., Ohm J.E., Soliman M.L., Chen X., Geiger J.D. Role of endolysosomes and pH in the pathogenesis and treatment of glioblastoma. Cancer Rep. (Hoboken). 2019; 2 (6): e1177. doi: 10.1002/cnr2.1177
- Böhme I., Bosserhoff A. Extracellular acidosis triggers a senescence-like phenotype in human melanoma cells. Pigment Cell Melanoma Res. 2020; 33 (1): 41–51. doi: 10.1111/pcmr.12811
- Corbet C., Bastien E., Santiago de Jesus J.P., Dierge E., Martherus R., Vander Linden C., Doix B., Degavre C., Guilbaud C., Petit L., Michiels C., Dessy C., Larondelle Y., Feron O. TGFβ2-induced formation of lipid droplets supports acidosis-driven EMT and the metastatic spreading of cancer cells. Nat. Commun. 2020; 11 (1): 454. doi: 10.1038/s41467-019-14262-3
- Gutsche K., Randi E.B., Blank V., Fink D., Wenger R.H., Leo C., Scholz C.C. Intermittent hypoxia confers pro-metastatic gene expression selectively through NF-κB in inflammatory breast cancer cells. Free Radic. Biol. Med. 2016; 101: 129–42. doi: 10.1016/j.freeradbiomed.2016.10.002
- Flores-Guzmán F., Utikal J., Umansky V. Dormant tumor cells interact with memory CD8+ T cells in RET transgenic mouse melanoma model. Cancer Lett. 2020; 474: 74–81. doi: 10.1016/j.canlet.2020.01.016
- Homann L., Rentschler M., Brenner E., Böhm K., Röcken M., Wieder T. IFN-γ and TNF Induce Senescence and a Distinct Senescence-Associated Secretory Phenotype in Melanoma. Cells. 2022; 11 (9): 1514. doi: 10.3390/cells11091514
- Geng K., Ma X., Jiang Z., Gu J., Huang W., Wang W., Xu Y., Xu Y. WDR74 facilitates TGF-β/Smad pathway activation to promote M2 macrophage polarization and diabetic foot ulcer wound healing in mice. Cell Biol. Toxicol. 2023; 39 (4): 1577–91. doi: 10.1007/s10565-022-09748-8
- Seubert B., Grünwald B., Kobuch J., Cui H., Schelter F., Schaten S., Siveke J.T., Lim N.H., Nagase H., Simonavicius N., Heikenwalder M., Reinheckel T., Sleeman J.P., Janssen K.P., Knolle P.A., Krüger A. Tissue inhibitor of metalloproteinases (TIMP)-1 creates a premetastatic niche in the liver through SDF-1/CXCR4-dependent neutrophil recruitment in mice. Hepatology. 2015; 61 (1): 238–48. doi: 10.1002/hep.27378
- Grünwald B., Harant V., Schaten S., Frühschütz M., Spallek R., Höchst B., Stutzer K., Berchtold S., Erkan M., Prokopchuk O., Martignoni M., Esposito I., Heikenwalder M., Gupta A., Siveke J., Saftig P., Knolle P., Wohlleber D., Krüger A. Pancreatic Premalignant Lesions Secrete Tissue Inhibitor of Metalloproteinases-1, Which Activates Hepatic Stellate Cells Via CD63 Signaling to Create a Premetastatic Niche in the Liver. Gastroenterology. 2016; 151 (5): 1011–24.e7. doi: 10.1053/j.gastro.2016.07.043
- Gao X.L., Zheng M., Wang H.F., Dai L.L., Yu X.H., Yang X., Pang X., Li L., Zhang M., Wang S.S., Wu J.B., Tang Y.J., Liang X.H., Tang Y.L. NR2F1 contributes to cancer cell dormancy, invasion and metastasis of salivary adenoid cystic carcinoma by activating CXCL12/CXCR4 pathway. BMC Cancer. 2019; 19 (1): 743. doi: 10.1186/s12885-019-5925-5
- Mezawa Y., Daigo Y., Takano A., Miyagi Y., Yokose T., Yamashita T., Morimoto C., Hino O., Orimo A. CD26 expression is attenuated by TGF-β and SDF-1 autocrine signaling on stromal myofibroblasts in human breast cancers. Cancer Med. 2019; 8 (8): 3936–48. doi: 10.1002/cam4.2249
- Huang C.P., Liu L.C., Lu H.L., Shyr C.R. Effects of hepatocyte growth factor on porcine mammary cell growth and senescence. Biomedicine (Taipei). 2023; 13 (1): 13–21. doi: 10.37796/2211-8039.1392
- Wang D., Sun H., Wei J., Cen B., DuBois R.N. CXCL1 Is Critical for Premetastatic Niche Formation and Metastasis in Colorectal Cancer. Cancer Res. 2017; 77 (13): 3655–65. doi: 10.1158/0008-5472.CAN-16-3199
- Mao W., Peters H.L., Sutton M.N., Orozco A.F., Pang L., Yang H., Lu Z., Bast R.C. Jr. The role of vascular endothelial growth factor, interleukin 8, and insulinlike growth factor in sustaining autophagic DIRAS3-induced dormant ovarian cancer xenografts. Cancer. 2019; 125 (8): 1267–80. doi: 10.1002/cncr.31935
- Zhou Y., Zheng X., Xu B., Deng H., Chen L., Jiang J. Histone methyltransferase SETD2 inhibits tumor growth via suppressing CXCL1-mediated activation of cell cycle in lung adenocarcinoma. Aging (Albany NY). 2020; 12 (24): 25189–206. doi: 10.18632/aging.104120
- Li X., Chang E., Cui J., Zhao H., Hu C., O’Dea K.P., Tirlapur N., Balboni G., Zhang J., Ying L., Ma D. Bv8 mediates myeloid cell migration and enhances malignancy of colorectal cancer. Front. Immunol. 2023; 14: 1158045. doi: 10.3389/fimmu.2023.1158045
- Ripley D., Tang X.M., Ma C., Chegini N. The expression and action of granulocyte macrophage-colony stimulating factor and its interaction with TGF-beta in endometrial carcinoma. Gynecol. Oncol. 2001; 81 (2): 301–9. doi: 10.1006/gyno.2001.6161
- Barney L.E., Hall C.L., Schwartz A.D., Parks A.N., Sparages C., Galarza S., Platt M.O., Mercurio A.M., Peyton S.R. Tumor cell-organized fibronectin maintenance of a dormant breast cancer population. Sci. Adv. 2020; 6 (11): eaaz4157. doi: 10.1126/sciadv.aaz4157
- Liu Y., Chen X., Xu Y., Yang T., Wang H., Wang Z., Hu Z., Chen L., Zhang Z., Wu Y. CTHRC1 promotes colorectal cancer progression by recruiting tumor-associated macrophages via up-regulation of CCL15. J. Mol. Med. (Berl). 2024; 102 (1): 81–94. doi: 10.1007/s00109-023-02399-0
- Lin Q., Ren L., Jian M., Xu P., Li J., Zheng P., Feng Q., Yang L., Ji M., Wei Y., Xu J. The mechanism of the premetastatic niche facilitating colorectal cancer liver metastasis generated from myeloid-derived suppressor cells induced by the S1PR1-STAT3 signaling pathway. Cell Death Dis. 2019; 10 (10): 693. doi: 10.1038/s41419-019-1922-5
- Du Y., Sun J., Liu X., Nan J., Qin X., Wang X., Guo J., Zhao C., Yang J. TGF-β2 antagonizes IL-6-promoted cell survival. Mol. Cell Biochem. 2019; 461 (1–2): 119–26. doi: 10.1007/s11010-019-03595-8
- Natani S., Sruthi K.K., Asha S.M., Khilar P., Lakshmi P.S.V., Ummanni R. Activation of TGF-β – SMAD2 signaling by IL-6 drives neuroendocrine differentiation of prostate cancer through p38MAPK. Cell Signal. 2022; 91: 110240. doi: 10.1016/j.cellsig.2021.110240
- Chen L., Zheng H., Yu X., Liu L., Li H., Zhu H., Zhang Z., Lei P., Shen G. Tumor-Secreted GRP78 Promotes the Establishment of a Pre-metastatic Niche in the Liver Microenvironment. Front. Immunol. 2020; 11: 584458. doi: 10.3389/fimmu.2020.584458
- Ei Z.Z., Choochuay K., Tubsuwan A., Pinkaew D., Suksomtip M., Vinayanuwattikun C., Chanvorachote P., Chunhacha P. GRP78/BiP determines senescence evasion cell fate after cisplatin-based chemotherapy. Sci. Rep. 2021; 11 (1): 22448. doi: 10.1038/s41598-021-01540-8
- Bai S., Wang Z., Wang M., Li J., Wei Y., Xu R., Du J. Tumor-Derived Exosomes Modulate Primary Site Tumor Metastasis. Front. Cell Dev. Biol. 2022; 10: 752818. doi: 10.3389/fcell.2022.752818
- Li C., Qin F., Wang W., Ni Y., Gao M., Guo M., Sun G. hnRNPA2B1-Mediated Extracellular Vesicles Sorting of miR-122-5p Potentially Promotes Lung Cancer Progression. Int. J. Mol. Sci. 2021; 22 (23): 12866. doi: 10.3390/ijms222312866
- Ding F.N., Gao B.H., Wu X., Gong C.W., Wang W.Q., Zhang S.M. miR-122-5p modulates the radiosensitivity of cervical cancer cells by regulating cell division cycle 25A (CDC25A). FEBS Open Bio. 2019; 9 (11): 1869–79. doi: 10.1002/2211-5463.12730
- Dai C., Zhang Y., Xu Z., Jin M. MicroRNA-122-5p inhibits cell proliferation, migration and invasion by targeting CCNG1 in pancreatic ductal adenocarcinoma. Cancer Cell Int. 2020; 20: 98. doi: 10.1186/s12935-020-01185-z
- Tang Y., Fan W., Zou B., Yan W., Hou Y., Kwabena Agyare O., Jiang Z., Qu S. TGF-β signaling and microRNA cross-talk regulates abdominal aortic aneurysm progression. Clin. Chim. Acta. 2021; 515: 90–5. doi: 10.1016/j.cca.2020.12.031
- Al-Ghezi Z.Z., Miranda K., Nagarkatti M., Nagarkatti P.S. Combination of Cannabinoids, Δ9- Tetrahydrocannabinol and Cannabidiol, Ameliorates Experimental Multiple Sclerosis by Suppressing Neuroinflammation Through Regulation of miRNA-Mediated Signaling Pathways. Front. Immunol. 2019; 10: 1921. doi: 10.3389/fimmu.2019.01921
- Price T.T., Burness M.L., Sivan A., Warner M.J., Cheng R., Lee C.H., Olivere L., Comatas K., Magnani J., Kim Lyerly H., Cheng Q., McCall C.M., Sipkins D.A. Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone. Sci. Transl. Med. 2016; 8 (340): 340ra73. doi: 10.1126/scitranslmed.aad4059
- Aksenenko M.B., Palkina N.V., Sergeeva O.N., Sergeeva E. Yu., Kirichenko A.K., Ruksha T.G. miR-155 overexpression is followed by downregulation of its target gene, NFE2L2, and altered pattern of VEGFA expression in the liver of melanoma B16-bearing mice at the premetastatic stage. Int. J. Exp. Pathol. 2019; 100 (5–6): 311–9. doi: 10.1111/iep.12342
- Zhang H., Freitas D., Kim H.S., Fabijanic K., Li Z., Chen H., Mark M.T., Molina H., Martin A.B., Bojmar L., Fang J., Rampersaud S., Hoshino A., Matei I., Kenific C.M., Nakajima M., Mutvei A.P., Sansone P., Buehring W., Wang H., Jimenez J.P., Cohen-Gould L., Paknejad N., Brendel M., Manova-Todorova K., Magalhães A., Ferreira J.A., Osório H., Silva A.M., Massey A., Cubillos-Ruiz J.R., Galletti G., Giannakakou P., Cuervo A.M., Blenis J., Schwartz R., Brady M.S., Peinado H., Bromberg J., Matsui H., Reis C.A., Lyden D. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol. 2018; 20 (3): 332–43. doi: 10.1038/s41556-018-0040-4
- Hu Y., Zai H., Jiang W., Yao Y., Ou Z., Zhu Q. miR-126 in Extracellular Vesicles Derived from Hepatoblastoma Cells Promotes the Tumorigenesis of Hepatoblastoma through Inducing the Differentiation of BMSCs into Cancer Stem Cells. J. Immunol. Res. 2021; 2021: 6744715. doi: 10.1155/2021/6744715
- Liu H.Y., Zhang Y.Y., Zhu B.L., Feng F.Z., Yan H., Zhang H.Y., Zhou B. miR-21 regulates the proliferation and apoptosis of ovarian cancer cells through PTEN/PI3K/AKT. Eur. Rev. Med. Pharmacol. Sci. 2019; 23 (10): 4149–55. doi: 10.26355/eurrev_201905_17917
- Desouky E.M., Khaliefa A.K., Hozayen W.G., Shaaban S.M., Hasona N.A. Signature of miR-21 and MEG-2 and their correlation with TGF-β signaling in breast cancer. Hum. Exp. Toxicol. 2023; 42: 9603271231159799. doi: 10.1177/09603271231159799
- Song J., Lv H., Liu B., Hao M., Taylor H.S., Zhang X., Li D., Huang Y. Let-7 suppresses liver fibrosis by inhibiting hepatocyte apoptosis and TGF-β production. Mol. Metab. 2023; 78: 101828. doi: 10.1016/j.molmet.2023.101828
补充文件
