Fetal programming of molar–incisor hypomineralization: a systematic review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Molar–incisor hypomineralization is a form of systemic enamel hypoplasia characterized by defects affecting 1 to 4 first permanent molars, often accompanied by incisor involvement. Molar–incisor hypomineralization occurs in approximately one in eight children worldwide.

AIM: This work aimed to substantiate the need for a more detailed investigation of the etiological factors underlying molar–incisor hypomineralization based on an analysis of publications on fetal programming, with particular emphasis on the influence of prenatal and perinatal factors.

METHODS: Relevant publications were retrieved from the PubMed and eLIBRARY.RU databases without time restrictions. Study selection proceeded in two stages. First, titles and abstracts were screened for relevance. Second, full texts were reviewed. Disagreements were resolved through group discussion until consensus was reached. Of 157 identified publications, 29 met the inclusion criteria for qualitative synthesis.

RESULTS: Prenatal factors associated with molar–incisor hypomineralization included maternal anemia, third-trimester illnesses, gestational diabetes, viral infections, more than three ultrasound examinations during the third trimester, preeclampsia, alcohol intake during pregnancy, psychological stress, and others. Perinatal factors reported in relation to molar–incisor hypomineralization included birth hypoxia, prolonged labor, preterm birth, low birth weight, labor induction, complications during delivery, cesarean section, and others.

CONCLUSION: The reviewed studies demonstrate a broad range of prenatal and perinatal factors associated with the development of molar–incisor hypomineralization. Expanding the evidence base on the etiologic mechanisms of molar–incisor hypomineralization may enable the development of effective population-level prevention strategies beginning in the prenatal period.

About the authors

Aleksandra A. Algazina

North State Medical University

Author for correspondence.
Email: algazina.sascha@ya.ru
ORCID iD: 0000-0002-3876-5960
SPIN-code: 8363-2605

MD

Russian Federation, Arkhangelsk

Maria A. Gorbatova

North State Medical University

Email: marigora@mail.ru
ORCID iD: 0000-0002-6363-9595
SPIN-code: 7732-0755

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, Arkhangelsk

Andrej M. Grjibovski

Reaviz University, Saint Petersburg; M.K. Ammosov North-Eastern Federal University

Email: a.grjibovski@yandex.ru
ORCID iD: 0000-0002-5464-0498
SPIN-code: 5118-0081

MD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg; Yakutsk

Ekaterina A. Mitkina

The First Sechenov Moscow State Medical University

Email: miekandr@yandex.ru
ORCID iD: 0000-0002-5631-5197
SPIN-code: 5996-4317

MD

Russian Federation, Moscow

Liubov N. Gorbatova

North State Medical University

Email: Detstomkaf@yandex.ru
ORCID iD: 0000-0003-0675-3647
SPIN-code: 8037-5341

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Arkhangelsk

References

  1. Rodd HD, Graham A, Tajmehr N, et al. Molar incisor hypomineralisation: current knowledge and practice. Int Dent J. 2021;71(4):285–291. doi: 10.1111/idj.12624 EDN: NJXXJQ
  2. Garot E, Rouas P, Somani C, et al. An update of the aetiological factors involved in molar incisor hypomineralisation (MIH): a systematic review and meta-analysis. Eur Arch Paediatr Dent. 2022;23(1):23–38. doi: 10.1007/s40368-021-00646-x EDN: SFULBV
  3. Shields S, Chen T, Crombie F, et al. The impact of molar incisor hypomineralisation on children and adolescents: a narrative review. Healthcare (Basel). 2024;12(3):370. doi: 10.3390/healthcare12030370 EDN: LHGYCX
  4. Ammar N, Fresen KF, Schwendicke F, Kühnisch J. Epidemiological trends in enamel hypomineralisation and molar-incisor hypomineralisation: a systematic review and meta-analysis. Clin Oral Investig. 2025;29(6):327. doi: 10.1007/s00784-025-06411-4
  5. Gorbatova MA, Utkina EI, Zinchenko GA, et al. Molar-incisor hypomineralization among 12-years old children in Arkhangelsk region. Stomatologiia (Mosk). 2019;98(2):64–66. doi: 10.17116/stomat20199802164 EDN: JAOOUD
  6. Luchsheva LF, Khamadeeva AM, Rusakova EY, et al. The epidemiology of molar-incisor hypomineralization in children of Khabarovsk Region. Uspehi sovremennogo estestvoznanija. 2015;(8):26–30. EDN: UIYRCN
  7. Kosyreva TF, Pronyaeva AI. Classification and prevalence of enamel hypoplasia. Pediatric Dentistry and Dental Prophylaxis. 2013;12(2):23–27. (In Russ.) EDN: RJFPXF
  8. Bukhari ST, Alhasan HA, Qari MT, et al. Prevalence and risk factors of molar incisor hypomineralization in the Middle East: A systematic review and meta-analysis. J Taibah Univ Med Sci. 2022;18(4):696–710. doi: 10.1016/j.jtumed.2022.12.011 EDN: SLXFMB
  9. Bakulski KM, Blostein F, London SJ. Linking prenatal environmental exposures to lifetime health with epigenome-wide association studies: state-of-the-science review and future recommendations. Environ Health Perspect. 2023;131(12):126001. doi: 10.1289/EHP12956 EDN: AXQKXC
  10. Dieckmann L, Czamara D. Epigenetics of prenatal stress in humans: the current research landscape. Clin Epigenetics. 2024;16(1):20. doi: 10.1186/s13148-024-01635-9 EDN: PFUVCY
  11. Lapehn S, Paquette AG. The placental epigenome as a molecular link between prenatal exposures and fetal health outcomes through the DOHaD hypothesis. Curr Environ Health Rep. 2022;9(3):490–501. doi: 10.1007/s40572-022-00354-8 EDN: JNSIMO
  12. Petrov YuA, Kupina AD. Fetal programming is a way to prevent diseases in adulthood (literature review). Medical Council. 2020;(13):50–56. doi: 10.21518/2079-701X-2020-13-50-56 EDN: GGUNQG
  13. Barker DJ. The developmental origins of adult disease. J Am Coll Nutr. 2004;23(6 Suppl):588S–595S. doi: 10.1080/07315724.2004.10719428
  14. Basak S, Mallick R, Navya Sree B, Duttaroy AK. placental epigenome impacts fetal development: effects of maternal nutrients and gut microbiota. Nutrients. 2024;16(12):1860. doi: 10.3390/nu16121860 EDN: SCAHYQ
  15. Mortillo M, Marsit CJ. Select early-life environmental exposures and dna methylation in the placenta. Curr Environ Health Rep. 2023;10(1):22–34. doi: 10.1007/s40572-022-00385-1 EDN: BGTYBF
  16. Hoffman DJ, Powell TL, Barrett ES, Hardy DB. Developmental origins of metabolic diseases. Physiol Rev. 2021;101(3):739–795. doi: 10.1152/physrev.00002.2020 EDN: SOAXMP
  17. Lurbe E, Ingelfinger J. Developmental and early life origins of cardiometabolic risk factors: novel findings and implications. Hypertension. 2021;77(2):308–318. doi: 10.1161/HYPERTENSIONAHA.120.14592 EDN: PLNMQL
  18. Shu Z, Ding X, Yue Q, et al. Effects of fetal famine exposure on the cardiovascular disease risk in the metabolic syndrome individuals. Diabetol Metab Syndr. 2022;14(1):173. doi: 10.1186/s13098-022-00948-0
  19. Samani D, Ziaei S, Musaie F, et al. Maternal smoking during pregnancy and early childhood dental caries in children: a systematic review and meta-analysis. BMC Oral Health. 2024;24(1):781. doi: 10.1186/s12903-024-04548-4 EDN: PNZEIX
  20. Thearawiboon S, Rojanaworarit C. Risk of early childhood caries estimated by maternal dental caries during pregnancy: a retrospective cohort study. Eur J Dent. 2024;18(1):329–340. doi: 10.1055/s-0043-1769896 EDN: IKBBLY
  21. Martins DDS, Ionta FQ, Pompermaier Garlet G, et al. Developmental defects of enamel. Monogr Oral Sci. 2024;32:10–34. doi: 10.1159/000538850
  22. Lima LJS, Ramos-Jorge ML, Soares MEC. Prenatal, perinatal and postnatal events associated with hypomineralized second primary molar: a systematic review with meta-analysis. Clin Oral Investig. 2021;25(12):6501–6516. doi: 10.1007/s00784-021-04146-6 EDN: NDOJVC
  23. Ahmadi R, Ramazani N, Nourinasab R. Molar incisor hypomineralization: a study of prevalence and etiology in a group of Iranian children. Iran J Pediatr. 2012;22(2):245–251.
  24. Arheiam A, Abbas S, Ballo L, et al. Prevalence, distribution, characteristics and associated factors of molar-incisor hypo-mineralisation among Libyan schoolchildren: a cross-sectional survey. Eur Arch Paediatr Dent. 2021;22(4):595–601. doi: 10.1007/s40368-020-00594-y EDN: VZCPVB
  25. Elfrink ME, Moll HA, Kiefte-de Jong JC, et al. Pre- and postnatal determinants of deciduous molar hypomineralisation in 6-year-old children. The generation R study. PLoS One. 2014;9(7):e91057. doi: 10.1371/journal.pone.0091057
  26. Elzein R, Chouery E, Abdel-Sater F, et al. Molar-incisor hypomineralisation in Lebanon: association with prenatal, natal and postnatal factors. Eur Arch Paediatr Dent. 2021;22(2):283–290. doi: 10.1007/s40368-020-00555-5 EDN: ABUPHS
  27. Garot E, Manton D, Rouas P. Peripartum events and molar-incisor hypomineralisation (MIH) amongst young patients in southwest France. Eur Arch Paediatr Dent. 2016;17(4):245–250. doi: 10.1007/s40368-016-0235-y EDN: JAJPNC
  28. Ghanim A, Manton D, Bailey D, et al. Risk factors in the occurrence of molar-incisor hypomineralization amongst a group of Iraqi children. Int J Paediatr Dent. 2013;23(3):197–206. doi: 10.1111/j.1365-263X.2012.01244.x
  29. Laisi S, Kiviranta H, Lukinmaa PL, et al. Molar-incisor-hypomineralisation and dioxins: new findings. Eur Arch Paediatr Dent. 2008;9(4):224–227. doi: 10.1007/BF03262639 EDN: VSQWIE
  30. Lygidakis NA, Dimou G, Marinou D. Molar-incisor-hypomineralisation (MIH). A retrospective clinical study in Greek children. II. Possible medical aetiological factors. Eur Arch Paediatr Dent. 2008;9(4):207–217. doi: 10.1007/BF03262637 EDN: KGXGFZ
  31. Mohamed RN, Basha S, Al-Thomali Y, et al. Frequency of molar incisor hypomineralization and associated factors among children with special health care needs. Ann Saudi Med. 2021;41(4):238–245. doi: 10.5144/0256-4947.2021.238 EDN: ZYKFNZ
  32. Noor Mohamed R, Basha S, Virupaxi SG, et al. Primary teeth in preterm low birth weight children and its association with molar incisor hypomineralization — a 3-year-prospective study. Children (Basel). 2021;8(12):1111. doi: 10.3390/children8121111 EDN: GMLBXD
  33. Nørrisgaard PE, Haubek D, Kühnisch J, et al. Association of high-dose vitamin d supplementation during pregnancy with the risk of enamel defects in offspring: a 6-year follow-up of a randomized clinical trial. JAMA Pediatr. 2019;173(10):924–930. doi: 10.1001/jamapediatrics.2019.2545
  34. Owlia F, Akhavan-Karbassi MH, Rahimi R. Could molar-incisor hypomineralization (MIH) existence be predictor of short stature? Int J Prev Med. 2020;11:101. doi: 10.4103/ijpvm.IJPVM_459_18 EDN: TSWXLW
  35. Pascon T, Barbosa AMP, Cordeiro RCL, et al. Prenatal exposure to gestational diabetes mellitus increases developmental defects in the enamel of offspring. PLoS One. 2019;14(2):e0211771. doi: 10.1371/journal.pone.0211771
  36. Pitiphat W, Luangchaichaweng S, Pungchanchaikul P, et al. Factors associated with molar incisor hypomineralization in Thai children. Eur J Oral Sci. 2014;122(4):265–270. doi: 10.1111/eos.12136
  37. Rai A, Singh A, Menon I, et al. Molar incisor hypomineralization: prevalence and risk factors among 7-9 years old school children in Muradnagar, Ghaziabad. Open Dent J. 2018;12:714–722. doi: 10.2174/1745017901814010714
  38. Sönmez H, Yıldırım G, Bezgin T. Putative factors associated with molar incisor hypomineralisation: an epidemiological study. Eur Arch Paediatr Dent. 2013;14(6):375–380. doi: 10.1007/s40368-013-0012-0 EDN: MUOLBD
  39. Tourino LF, Corrêa-Faria P, Ferreira RC, et al. Association between molar incisor hypomineralization in schoolchildren and both prenatal and postnatal factors: a population-based study. PLoS One. 2016;11(6):e0156332. doi: 10.1371/journal.pone.0156332
  40. van der Tas JT, Elfrink MEC, Heijboer AC, et al. Foetal, neonatal and child vitamin D status and enamel hypomineralization. Community Dent Oral Epidemiol. 2018;46(4):343–351. doi: 10.1111/cdoe.12372
  41. Verma S, Dhinsa K, Tripathi AM, et al. Molar incisor hypomineralization: prevalence, associated risk factors, its relation with dental caries and various enamel surface defects in 8-16-year-old schoolchildren of lucknow district. Int J Clin Pediatr Dent. 2022;15(1):1–8. doi: 10.5005/jp-journals-10005-2088 EDN: JXCYJP
  42. Pronyaeva AI, Pronyaeva AI, Kosyreva TF. Factors influencing the prevalence of molar-incisor hypomineralization. Sbornik nauchnyh tezisov i statej “Zdorov’’e i obrazovanie v XXI veke”. 2011;(4):397–398. (In Russ.) EDN: SGOTKR
  43. Karpova LS, Tkachenko TB, Savushkina NA, et al. Analysis of enamel hypoplasia causes and risk factors in children. Pediatric Dentistry and Dental Prophylaxis. 2023;23(3):255–261. doi: 10.33925/1683-3031-2023-647 EDN: AFQIMM
  44. Martı Akgün O, Yıldırım C, Oflaz U, Topaclıoglu B. Investigating the causes of molar incisor hypomineralization: a cross-sectional study on maternal and child health factors. Rev Cient Odontol (Lima). 2024;12(4):e216. doi: 10.21142/2523-2754-1204-2024-216 EDN: ULMBOU
  45. Ahmed AT, Hector EC, Urena-Cirett JL, et al. Early lead exposure associated with molar hypomineralization. Pediatr Dent. 2023;45(5):427–433.
  46. Muñoz J, Alvarado-Lorenzo A, Criado-Pérez L, et al. Influence of maternal health status during pregnancy and the child´s medical history on molar-incisor hypomineralization in a group of Spanish children (aged 6-14 years): a retrospective case-control study. BMC Oral Health. 2024;24(1):1252. doi: 10.1186/s12903-024-05065-0 EDN: WHTPDY
  47. Contac LR, Pop SI, Voidazan S, Bica CI. Molar incisor hypomineralization: etiology, correlation with tooth number anomalies and implications for comprehensive management strategies in children from Transylvania. Diagnostics (Basel). 2024;14(21):2370. doi: 10.3390/diagnostics14212370 EDN: RAZOGM
  48. Winkler JR, Dixon BL, Singh I, et al. Prenatal exposure to environmental toxins and comprehensive dental findings in a population cohort of children. BMC Oral Health. 2024;24(1):326. doi: 10.1186/s12903-023-03786-2 EDN: AIJQXY
  49. Zameer M, Wali Peeran S, Nahid Basheer S, et al. Molar incisor hypomineralization: Prevalence, severity and associated aetiological factors in children seeking dental care at Armed Forces Hospital Jazan, Saudi Arabia. Saudi Dent J. 2024;36(8):1111–1116. doi: 10.1016/j.sdentj.2024.06.003 EDN: GFSTGA
  50. Rivera M, Karakowsky L, Medina-Solís CE, et al. Prevalence, defect characteristics and risk factors associated with molar incisor hypomineralisation in Mexican schoolchildren: a cross-sectional study. Eur Arch Paediatr Dent. 2025. doi: 10.1007/s40368-025-01078-7
  51. Muñoz J, Alvarado-Lorenzo A, Criado-Pérez L, et al. Aetiological factors in molar incisor hypomineralisation: a case-control study from Salamanca, Spain. Ital J Pediatr. 2025;51(1):129. doi: 10.1186/s13052-025-01972-2
  52. Jiménez-Farfán D, Guevara J, Zenteno E, Hernández-Guerrero JC. Alteration of the sialylation pattern of the murine tooth germ after ethanol exposure. Birth Defects Res A Clin Mol Teratol. 2005;73(12):980–988. doi: 10.1002/bdra.20198
  53. Cheng E, George AA, Bansal SK, et al. Neonatal hypocalcemia: common, uncommon, and rare etiologies. Neoreviews. 2023;24(4):e217–e228. doi: 10.1542/neo.24-4-e217 EDN: AZGAXU
  54. Ford D, Seow WK, Kazoullis S, et al. A controlled study of risk factors for enamel hypoplasia in the permanent dentition. Pediatr Dent. 2009;31(5):382–328.
  55. Wuollet E, Laisi S, Salmela E, et al. Molar-incisor hypomineralization and the association with childhood illnesses and antibiotics in a group of Finnish children. Acta Odontol Scand. 2016;74(5):416–422. doi: 10.3109/00016357.2016.1172342
  56. Bensi C, Costacurta M, Belli S, et al. Relationship between preterm birth and developmental defects of enamel: A systematic review and meta-analysis. Int J Paediatr Dent. 2020;30(6):676–686. doi: 10.1111/ipd.12646 EDN: BZWBIY
  57. Roberton NR, Smith MA. Early neonatal hypocalcaemia. Arch Dis Child. 1975;50(8):604–609. doi: 10.1136/adc.50.8.604
  58. Aine L, Backström MC, Mäki R, et al. Enamel defects in primary and permanent teeth of children born prematurely. J Oral Pathol Med. 2000;29(8):403–409. doi: 10.1034/j.1600-0714.2000.290806.x
  59. Futrakul S, Praisuwanna P, Thaitumyanon P. Risk factors for hypoxic-ischemic encephalopathy in asphyxiated newborn infants. J Med Assoc Thai. 2006;89(3):322–328.
  60. Trotman H, Henny-Harry C. Factors associated with extreme hyperbilirubinaemia in neonates at the University Hospital of the West Indies. Paediatr Int Child Health. 2012;32(2):97–101. doi: 10.1179/2046905512Y.0000000014
  61. Hansen AK, Wisborg K, Uldbjerg N, Henriksen TB. Risk of respiratory morbidity in term infants delivered by elective caesarean section: cohort study. BMJ. 2008;336(7635):85–87. doi: 10.1136/bmj.39405.539282.BE
  62. Cyna AM, Andrew M, Emmett RS, et al. Techniques for preventing hypotension during spinal anaesthesia for caesarean section. Cochrane Database Syst Rev. 2006;(4):CD002251. doi: 10.1002/14651858.CD002251.pub2
  63. Balki M, Carvalho JC. Intraoperative nausea and vomiting during cesarean section under regional anesthesia. Int J Obstet Anesth. 2005;14(3):230–241. doi: 10.1016/j.ijoa.2004.12.004
  64. Narkevich AN, Vinogradov KA. The most common mistakes made by researchers in presenting research results. Ekologiya cheloveka (Human Ecology). 2020;27(8):55–64. doi: 10.33396/1728-0869-2020-8-55-64 EDN: URBOQG
  65. Narkevich AN, Vinogradov KA. The most common errors in medical research. Ekologiya cheloveka (Human Ecology). 2020;27(7):59–64. doi: 10.33396/1728-0869-2020-7-59-64 EDN: ITOJGP

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).