Intramembranous ossification in alveolar ridge defect repair using noninductive biomaterials: experimental study
- Authors: Perova M.D.1,2, Ananich A.Y.1, Verevkin A.A.1, Sevostyanov I.A.2, Melkonian K.I.1, Samoxvalova I.D.1,2, Alayoub I.1
-
Affiliations:
- Kuban State Medical University
- LLC “Stomatological Сenter ‘Intelligent’”
- Issue: Vol 29, No 4 (2025)
- Pages: 357-367
- Section: Original Study Articles
- URL: https://ogarev-online.ru/1728-2802/article/view/313616
- DOI: https://doi.org/10.17816/dent678800
- EDN: https://elibrary.ru/CXBVCW
- ID: 313616
Cite item
Abstract
BACKGROUND: Limited understanding of direct bone formation during repair of alveolar ridge defects—compared with extensively studied endochondral ossification—leads to varied interpretations of treatment outcomes and efficacy assessments in dentistry and maxillofacial surgery.
AIM: This study aimed to investigate early repair of critical-sized alveolar bone defects via intramembranous ossification using noninductive biomaterials.
METHODS: This segment of the study was conducted at the Central Research Laboratory of Kuban State Medical University utilizing three sexually mature healthy minipigs. Animal care adhered to bioethical standards. Critical-sized bone defects were filled with acellular dermal matrix and naturally derived osteoconductive granules. Animals were euthanized on day 120. Morphologic assessment of decalcified specimens was performed with hematoxylin and eosin, van Gieson’s picrofuchsin, and Masson’s trichrome (BioVitrum, Russia). Randomization was not applied.
RESULTS: Defect repair was mediated by de novo vascularization via initiation of local hematopoiesis. Sinusoidal capillaries formed in the venous network of the regional vascular bed, with emerging hematopoietic cells migrating through discontinuous endothelium. Immature precursor cells proliferated and differentiated predominantly into segmental granulocytes, which participated in dynamic intercellular and cell–matrix interactions, forming transient intermediate cell types. These processes led to the development of a reticular connective tissue—niche resembling bone marrow structures—with new osteoid and reticulofibrotic trabeculae. Noninductive matrix and granular biomaterials demonstrated an effect on vasculogenesis.
CONCLUSION: These results reveal a direct relationship between the induction of hematopoiesis in sinusoidal capillaries within alveolar defects and intramedullary osteogenesis. Granulocytes play a pivotal role in normal healing and reparative dysregulation in the presence of nonresorbed osteoconductive granules.
Full Text
##article.viewOnOriginalSite##About the authors
Marina D. Perova
Kuban State Medical University; LLC “Stomatological Сenter ‘Intelligent’”
Email: mperova2013@yandex.ru
ORCID iD: 0000-0001-6974-6407
SPIN-code: 5552-7988
MD, Dr. Sci. (Medicine), Associate Professor; Scientific & Clinical Base of Kuban State Medical University
Russian Federation, Krasnodar; KrasnodarArtem Yu. Ananich
Kuban State Medical University
Email: ananicha.ksma@mail.ru
ORCID iD: 0000-0002-5166-2894
SPIN-code: 7324-7491
Russian Federation, 4 Mitrofan Sedin st, Krasnodar, 350063
Aleksandr A. Verevkin
Kuban State Medical University
Email: vilehand@bk.ru
ORCID iD: 0000-0002-4159-2618
SPIN-code: 8264-4990
MD, Cand. Sci. (Medicine)
Russian Federation, 4 Mitrofan Sedin st, Krasnodar, 350063Igor A. Sevostyanov
LLC “Stomatological Сenter ‘Intelligent’”
Email: drsevostyanovia@gmail.com
ORCID iD: 0000-0002-8472-7279
SPIN-code: 9174-3102
MD, Cand. Sci. (Medicine); Scientific & Clinical Base of Kuban State Medical University
Russian Federation, KrasnodarKarina I. Melkonian
Kuban State Medical University
Email: kimelkonian@gmail.com
ORCID iD: 0000-0003-2451-6813
SPIN-code: 2461-8365
Russian Federation, 4 Mitrofan Sedin st, Krasnodar, 350063
Inna D. Samoxvalova
Kuban State Medical University; LLC “Stomatological Сenter ‘Intelligent’”
Author for correspondence.
Email: samoxvalovai@mail.ru
ORCID iD: 0000-0003-0360-8882
SPIN-code: 9091-1041
Scientific & Clinical Base of Kuban State Medical University
Russian Federation, Krasnodar; KrasnodarIyad Alayoub
Kuban State Medical University
Email: iyadalayoub@yahoo.com
ORCID iD: 0009-0007-3888-8024
Russian Federation, 4 Mitrofan Sedin st, Krasnodar, 350063
References
- Ananich AYu, Perova MD, Sevostyanov IA, Gilevich IV. Current possibilities and prospects of alveolar bone defect replacement and covering tissues: narrative literature review. Russian Journal of Dentistry. 2024;28(3):271–285. doi: https://doi.org/10.17816/dent623472 EDN: RSMDNU
- Bozo IYa. Development and application of gene-activated osteoplastic material for replacing bone defects [dissertation]. Moscow: FGBOU VO MGMSU named after A.I. Evdokimov; 2017. (In Russ.) EDN: ATXBQA
- Soldatov IK, Juravleva LN, Tegza NV, et al. Scientometric analysis of dissertation papers on pediatric dentistry in Russia. Russian Journal of Dentistry. 2023;27(6):571–580. doi: 10.17816/dent624942 EDN: QINWXB
- Presnyakov EV, Kurbonov KhR, Sorochanu IP, et al. Regenerative osteogenesis at the interface of tissue-osteoplastic material. Morphology. 2023;161(4):33–42. doi: 10.17816/morph.629963 EDN: FKRNTE
- Zheng J, Zhao Z, Yang Y, et al. Biphasic mineralized collagen-based composite scaffold for cranial bone regeneration in developing sheep. Regen Biomater. 2022;9:rbac004. doi: 10.1093/rb/rbac004 EDN: MOVRGE
- Balin VV, Dvorianchikov VV, Zheleznyak VA, et al. Evaluation of the postoperative course in patients after removal of dystopic third molars. Russian Journal of Dentistry. doi: 10.17816/dent634561 EDN: UOXPET
- Saghiri MA, Asatourian A, Garcia-Godoy F, Sheibani N. The role of angiogenesis in implant dentistry part II: The effect of bone-grafting and barrier membrane materials on angiogenesis. Med Oral Patol Oral Cir Bucal. 2016;21(4):e526–37. doi: 10.4317/medoral.21200
- Volotovski A, Studenikina T. Development and growth of the skull in pre- and early postnatal periods of ontogenesis. Military Medicine. 2022;(1):66–73. doi: 10.51922/2074-5044.2022.1.66 EDN: PURIRI
- Rugal VI, Semenova NYu, Bessmeltsev SS. Formation of stromal microenvironment and formation of hematopoiesis in fetal spongy bone. The Bulletin of hematology. 2019;15(4):14–18. EDN: DJBFNM
- Kamilov FK, Farshatova ER, Enikeev DA. Cellular and molecular mechanisms remodelling of bone tissue and regulation. Fundamental’nye issledovaniya. 2014;(7-4):836–842. EDN: SMJYND
- Marks SC, Odgren PR. Structure and development of the skeleton. In: Principles of bone biology (second edition). San Diego: Academic Press; 2002. Р. 3–16. doi: 10.1016/B978-012098652-1.50103-7
- Bixel MG, Sivaraj KK, Timmen M, et al. Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration. Nat Commun. 2024;15(1):4575. doi: 10.1038/s41467-024-48579-5 EDN: MICBPN
- Battafarano G, Rossi M, De Martino V, et al. Strategies for bone regeneration: from graft to tissue engineering. Int J Mol Sci. 2021;22(3):1128. doi: 10.3390/ijms22031128 EDN: VOMMWO
- Volkov AV. Morphology of reparative osteogenesis and osseointegration in maxillofacial surgery [dissertation abstract]. Moscow; 2019. (In Russ.) Available from: http://dissovet.rudn.ru/web-local/prep/rj/index.php?id=7&mod=dis&dis_id=2396
- Aghazadeh AR, Hasanov IA, Aghazadeh RR. Histomorpho-metric and quantitative histochemical analysis of periimplantation zone in patients with different bone mineral density within dental implantation. Annals of The Russian Academy of Medical Sciences. 2014;69(3-4):19–23. doi: 10.15690/vramn.v69i3-4.990 EDN: SBTUAV
- Minaeva SA, Vasilyev AV, Bukharova TB, et al. Application of Raman scattering spectroscopy for study of the mineralization of bone regenerates. Clinical and Experimental Morphology. 2012;(4):53–56. EDN: PMEWZB
- Bykov VL. Cytology and general histology (functional morphology of human cells and tissues). Saint Petersburg: SOTIS; 1998. (In Russ.)
- Karaplis АС. Embryonic development of bone and regulation of intramembranous and endochondral bone formation. In: Principles of bone biology (third edition). 2008;1:53–84. doi: 10.1016/B978-0-12-373884-4.00025-2
- Percival CJ, Richtsmeier JT. Angiogenesis and intramembranous osteogenesis. Dev Dyn. 2013;242(8):909–922. doi: 10.1002/dvdy.23992
- Zhai Y, Zhou Z, Xing X, et al. Differential bone and vessel type formation at superior and dura periosteum during cranial bone defect repair. Bone Res. 2025;13(1):8. doi: 10.1038/s41413-024-00379-9 EDN: CHVMDS
- Vasilyev AV, Volkov AV, Bolshakova GB, Goldstein DV. Characteristics of neoosteogenesis in the model of critical defect of rats’ parietal bone using traditional and three-dimensional morphometry. Genes & Cells. 2014;9(4):121–127. doi: 10.23868/gc120414 EDN: YRWLHX
- Gosain AK, Santoro TD, Song LS, et al. Osteogenesis in calvarial defects: contribution of the dura, the pericranium, and the surrounding bone in adult versus infant animals. Plast Reconstr Surg. 2003;112(2):515–527. doi: 10.1097/01.PRS.0000070728.56716.51
- McKee MD, Buss DJ, Reznikov N. Mineral tessellation in bone and the stenciling principle for extracellular matrix mineralization. J Struct Biol. 2022;214(1):107823. doi: 10.1016/j.jsb.2021.107823 EDN: NPEZTM
- Wang S, Liu Y, Fang D, Shi S. The miniature pig: a useful large animal model for dental and orofacial research. Oral Dis. 2007;13(6):530–537. doi: 10.1111/j.1601-0825.2006.01337.x
- Mesher EL. Histology according to Junqueiro. Bykov VL, editor. Moscow: GEOTAR-Media; 2022. (In Russ.) doi: 10.33029/9704-6981-1-BNT-2022-1-624 EDN: TNMECM
- Patent RUS No. 2717088 C1/ 18.03.2020. Byul. No. 8. Gilevich IV, Sotnichenko AS, Melkonyan KI, t al. Method of producing acellular dermal matrix. EDN: KFTWTZ
- Perova MD. Periodontal tissues: norm, pathology, ways of restoration. Moscow: Triada Ltd.; 2005. (In Russ.) EDN: QLKUNJ
- Omatsu Y. Cellular niches for hematopoietic stem cells in bone marrow under normal and malig-nant conditions. Inflamm Regen. 2023;43(1):15. doi: 10.1186/s41232-023-00267-5 EDN: HXWHII
- Dalli J, Montero-Melendez T, Norling LV, et al. Heterogeneity in neutrophil microparticles reveals distinct proteome and functional properties. Mol Cell Proteomics. 2013;12(8):2205–2219. doi: 10.1074/mcp.M113.028589
- Nesterova IV, Kolesnikova NV, Chudilova GA, et al. The new look at neutrophilic granulocytes: rethinking old dogmas. Part 1. Russian Journal of Infection and Immunity. 2017;7(3):219–230. doi: 10.15789/2220-7619-2017-3-219-230 EDN: ZHTRMJ
- Perova MD, Shubich MG, Kozlov VA, Tropina AV. Evaluation of processed lipoaspirate cells autografting for the treatment of advanced periodontitis and features of granulation tissue growth. The Dental Institute. 2010;(2):62–64. EDN: MWCQXJ
- Perova MD, Shubich MG. Discovery of the neutrophil extracellular traps begins a new stage in the study of neutrophil morphogenesis and function. Morphology. 2011;139(3):89–96. EDN: MOHNLC
- Ivanov AN, Bugaeva IO, Kurtukova MO. Structural characteristics of human and other mammalian endothelial cells. Tsitologiya. 2016;58(9):657–665. EDN: WJLJDZ
- Balaji S, King A, Crombleholme TM, Keswani SG. The role of endothelial progenitor cells in postnatal vasculogenesis: implications for therapeutic neovascularization and wound healing. Adv Wound Care (New Rochelle). 2013;2(6):283–295. doi: 10.1089/wound.2012.0398
- Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505(7483):327–334. doi: 10.1038/nature12984
Supplementary files
