Aligner manufacturing as an example of digital technology in orthodontics: A review
- Authors: Demyanenko S.A.1, Penkova Y.Y.1, Morozov A.L.1
-
Affiliations:
- V.I. Vernadsky Crimean Federal University
- Issue: Vol 29, No 1 (2025)
- Pages: 79-88
- Section: Reviews
- URL: https://ogarev-online.ru/1728-2802/article/view/313593
- DOI: https://doi.org/10.17816/dent642024
- ID: 313593
Cite item
Abstract
In recent decades, removable thermoplastic orthodontic appliances, or aligners, have become a popular alternative to conventional fixed appliances for occlusion correction by applying loads that generate specific tooth movements. Aligner manufacturing and application technology enables a customized dental alignment system with complete control over the required thickness, length, and fixation.
AIM: To examine the approaches and possibilities for aligner modeling, as well as their manufacturing techniques.
The paper presents a literature review on digital orthodontics in aligner manufacturing. The findings of Russian and worldwide studies on the use of removable orthodontic appliances for occlusion correction and malocclusion prevention and treatment, as well as modeling and manufacturing techniques and materials used, are reviewed.
Moreover, the study discusses 3D printing technologies, which have revolutionized surgical implantation, prosthetic dentistry, restorative dentistry, orthodontics, implantology, and tool manufacturing. In contrast to conventional production processes, which involve molding and machining or other subtractive technologies, this technology has a unique way of producing components by adding the material layer by layer.
The paper demonstrates a multiple-stage aligner manufacturing process, which includes taking an impression of the patient’s jaw and scanning it in 3D. The resulting 3D model provides representative before and after images; the same software is used to produce a series of 3D models of future aligners, which are then printed for production.
Modern occlusion correction procedures that use aligners not only improve malocclusion, but also make orthodontic treatment more comfortable for patients.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Svetlana A. Demyanenko
V.I. Vernadsky Crimean Federal University
Email: dc.kvalitet@gmail.com
ORCID iD: 0000-0002-2743-498X
SPIN-code: 9692-7083
MD, Dr. Sci. (Medicine), Professor
Russian Federation, SimferopolYana Yu. Penkova
V.I. Vernadsky Crimean Federal University
Author for correspondence.
Email: yanapenkova2003@mail.ru
ORCID iD: 0009-0007-7973-4689
Russian Federation, Simferopol
Andrey L. Morozov
V.I. Vernadsky Crimean Federal University
Email: moyar@list.ru
ORCID iD: 0009-0007-7871-9081
SPIN-code: 2737-5787
Russian Federation, Simferopol
References
- Barone S, Paoli A, Razionale AV, Savignano R. Modelling strategies for the advanced design of polymeric orthodontic aligners. In: Fred A, Gamboa H, editors. Biomedical Engineering Systems and Technologies. BIOSTEC 2016. Communications in Computer and Information Science. Springer; Cham. doi: 10.1007/978-3-319-54717-6_5
- Barone S, Paoli A, Razionale AV, Savignano R. Computational design and engineering of polymeric orthodontic aligners. Int J Numer Method Biomed Eng. 2017;33(8):e2839. doi: 10.1002/cnm.2839
- Degtev IA, Kazumyan SV, Bilalova FA, et al. Materials for aligner thermoforming. International Research Journal. 2021;4-2. doi: 10.23670/IRJ.2021.106.4.048 EDN: WMCPYZ
- Rosvall MD, Fields HW, Ziuchkovski J, et al. Attractiveness, acceptability, and value of orthodontic appliances. Am J Orthod Dentofacial Ortho. 2009;135(3):276–277. doi: 10.1016/j.ajodo.2008.09.020
- Zinelis S, Eliades T, Eliades G, et al. Comparative assessment of the roughness, hardness, and wear resistance of aesthetic bracket materials. Dent Mater. 2005;21:890–894. doi: 10.1016/j.dental.2005.03.007 EDN: KICDUB
- Dobrin RJ, Kamel IL, Musich DR. Load-deformation characteristics of polycarbonate orthodontic brackets. Am J Orthod. 1975;67:24–33. doi: 10.1016/0002-9416(75)90126-8
- Kaur S, Singh R, Soni S, et al. Esthetic orthodontic appliances — A review. Ann Geriatr Educ Med Sci. 2008;5:11–14.
- Leonardi R. Cone-beam computed tomography and three-dimensional orthodontics. Where we are and future perspectives. J Orthod. 2019;46:45–48. doi: 10.1177/1465312519840029
- Tokarevich IV, Kipkaeva LV, Gorlacheva TV, et al. Innovations in orthodontics: textbook. Minsk: BSMU; 2022. 100 p. (In Russ.)
- Yassir YA, Nabbat SA, McIntyre GT, Bearn DR. Clinical effectiveness of clear aligner treatment compared to fixed appliance treatment: an overview of systematic reviews. Clin Oral Investig. 2022;26(3):2353–2370. doi: 10.1007/s00784-021-04361-1 EDN: PAVGWR
- Upadhyay M, Arqub SA. Biomechanics of clear aligners: hidden truths & first principles. J World Fed Orthod. 2022;11(1):12–21. doi: 10.1016/j.ejwf.2021.11.002 EDN: FWDNKW
- Boyd RL, Miller RJ, Vlaskalic V. The invisalign system in adult orthodontics: mild crowding and space closure cases. J Clin Orthod. 2000;34:203–212.
- Ganjali NT. Bracket technique or eliners. Bulletin of Medical Internet Conferences. 2014;4(4):370–378. (In Russ.) EDN: SDYRXJ
- Tartaglia GM, Mapelli A, Maspero C, et al. Direct 3D printing of clear orthodontic aligners: current state and future possibilities. Materials (Basel). 2021;14(7):1799. doi: 10.3390/ma14071799 EDN: ZEVWDL
- Maspero C, Giannini L, Riva R, et al. Nasal cycle evaluation in 10 young patients: Rhynomanometric analysis. Mondo Ortod. 2009;34:263–268. doi: 10.1016/j.mor.2008.11.001
- Abate A, Cavagnetto D, Fama A, et al. Efficacy of operculectomy in the treatment of 145 cases with unerupted second molars: a retrospective case–control study. Dent J. 2020;8:65. doi: 10.3390/dj8030065 EDN: CCAMOR
- Maspero C, Fama A, Cavagnetto D, et al. Treatment of dental dilacerations. J Biol Regul Homeost Agents. 2019;33:1623–1627.
- Martorelli M, Gerbino S, Giudice M, Ausiello P. A comparison between customized clear and removable orthodontic appliances manufactured using RP and CNC techniques. Dent Mater. 2013;29:e1–e10. doi: 10.1016/j.dental.2012.10.011
- Khosravani MR, Reinicke T. On the environmental impacts of 3D printing technology. Appl Mater Today. 2020;20:100689. doi: 10.1016/j.apmt.2020.100689 EDN: HZECDE
- Zinelis S, Panayi N, Polychronis G, et al. Comparative analysis of mechanical properties of orthodontic aligners produced by different contemporary 3D printers. Orthod Craniofac Res. 2022;25(3):336–341. doi: 10.1111/ocr.12537 EDN: KLBUDK
- B ucci R, Rongo R, Levatè C, et al. Thickness of orthodontic clear aligners after thermoforming and after 10 days of intraoral exposure: a prospective clinical study. Prog Orthod. 2019;20(1):36. doi: 10.1186/s40510-019-0289-6 EDN: BJUPAH
- Hahn W, Dathe H, Fialka-Fricke J, et al. Influence of thermoplastic appliance thickness on the magnitude of force delivered to a maxillary central incisor during tipping. Am J Orthod Dentofacial Orthop. 2009;136(1):12.e1–13. doi: 10.1016/j.ajodo.2008.12.015
- Ihsse n BA, Kerberger R, Rauch N, et al. Impact of dental model height on thermoformed PET-G aligner thickness — an in vitro micro-CT study. Appl Sci. 2021;21(11):6674. doi: 10.3390/app11156674 EDN: LDCOPN
- Kennin g KB, Risinger DC, English JD, et al. Evaluation of the dimensional accuracy of thermoformed appliances taken from 3D printed models with varied shell thicknesses: An in vitro study. Int Orthod. 2021;19(1):137–146. doi: 10.1016/j.ortho.2021.01.005 EDN: KYVQGZ
- Ivanova VA, Borisov VV, Platonova VV, Danshina SD. High accuracy of designs when using 3d printing in implantology (review of literature). Challenges in Modern Medicine. 2020;43(1):93–101. doi: 10.18413/2687-0940-2020-43-1-93-101 EDN: HMPNSR
- Shtana V S, Ryzhova IP. Review of modern materials in orthopedic stomatology. Actual Problems of Medicine. 2019;42(1):55–66.
- Maspero C, Tartaglia GM. 3D printing of clear orthodontic aligners: where we are and where we are going. Materials. 2020;13(22):5204. doi: 10.3390/ma13225204 EDN: PMROHF
- Nakano H, Kato R, Kakami C, et al. Development of biocompatible resins for 3D printing of direct aligners. J Photopolym Sci Tec. 2019;32(2):209–216. doi: 10.2494/photopolymer.32.209
- Zinelis S, Panayi N, Polychronis G, et al. Comparative analysis of me-chanical properties of orthodontic aligners produced by different contemporary 3D printers. Orthod Craniofac Res. 2022;25(3):336–341. doi: 10.1111/ocr.12537
- Kharitonov DY, Domashevskaya EP, Azarova EA, Goloschapov DL. The comparison of morphological and structural characteristics of the human mandibular bone tissue and the osteoplastic material “Bioplast-Dent”. Fundamental’nye issledovanija. 2014;7(10):1389–1394. EDN: TCGKHP
- Wiranto MG, Engelbrecht WP, Tutein Nolthenius HE, et al. Validity, reliability, and reproducibility of linear measurements on digital models obtained from intraoral and cone-beam computed tomography scans of alginate impressions. Am J Orthod Dentofacial Orthop. 2013;143(1):140–147. doi: 10.1016/j.ajodo.2012.06.018
- Christopoulou I, Kaklamanos EG, Makrygiannakis MA, et al. Patient-reported experiences and preferences with intraoral scanners: a systematic review. Eur J Orthod. 2022;44(1):56–65. doi: 10.1093/ejo/cjab027 EDN: ABACRX
- Groth C, Kravi tz ND, Jones PE, et al. Three-dimensional printing technology. J Clin Orthod. 2014;48:475–485.
- Piedra-Cascón W, Krishnamurthy VR, Att W, Revilla-León M. 3D printing parameters, supporting structures, slicing, and post-processing procedures of vat-polymerization additive manufacturing technologies: A narrative review. J Dent. 2021;109:103630. doi: 10.1016/j.jdent.2021.103630 EDN: ISRCTC
- Ercoli F, Tepedino M, Parziale V, Luzi C. A comparative study of two different clear aligner systems. Prog Orthod. 2014;15:31. doi: 10.1186/s40510-014-0031-3 EDN: VAXOEG
- Pithon MM. A modi fied thermoplastic retainer. Prog Orthod. 2012;13:195–199. doi: 10.1016/j.pio.2012.01.001
- Weir T. Clear alig ners in orthodontic treatment. Aust Dent J. 2017;62(Suppl. 1):58–62. doi: 10.1111/adj.12480
- Ryu JH, Kwon JS, Jiang HB, et al. Effects of thermoforming on the physical and mechanical properties of thermoplastic materials for transparent orthodontic aligners. Korean J Orthod. 2018;48:316–325. doi: 10.4041/kjod.2018.48.5.316
- Tamburrino F, D’Anto V, Bucci R, et al. Mechanical properties of thermoplastic polymers for aligner manufacturing: in vitro study. Dent J. 2020;8:47. doi: 10.3390/dj8020047 EDN: YPTFRL
- Skaik A, Wei XL, Abus amak I, Iddi I. Effects of time and clear aligner removal frequency on the force delivered by different polyethylene terephthalate glycol-modified materials determined with thin-film pressure sensors. Am J Orthod Dentofac Orthop. 2019;155:98–107. doi: 10.1016/j.ajodo.2018.03.017
- Gerard Bradley T, Teske L, Eliades G, et al. Do the mechanical and chemical properties of Invisalign TM appliances change after use? A retrieval analysis. Eur J Orthod. 2015;38:27–31.
- Martina S, Rongo R, Buc ci R, et al. In vitro cytotoxicity of different thermoplastic materials for clear aligners. Angle Orthod. 2019;89:942–945. doi: 10.2319/091718-674.1
- Shivapuja P, inventor. D irect 3D-printed orthodontic aligners with torque, rotation, and full control anchors. United States patent US 10179035. 2019 January 15.
- Cai Y, Yang X, He B, Yao J. Finite element method analysis of the periodontal ligament in mandibular canine movement with transparent tooth correction treatment. BMC Oral Health. 2015;15:106. doi: 10.1186/s12903-015-0091-x EDN: LIXRWW
- Gomez JP, Peña FM, Martí nez V, et al. Initial force systems during bodily tooth movement with plastic aligners and composite attachments: A three-dimensional finite element analysis. Angle Orthod. 2015;85(3):454–460. doi: 10.2319/050714-330.1
- Prasad S, Kader NA, Sujath G, Raj T. 3D printing in dentistry. J 3D Print Med. 2018;2:89–91. doi: 10.2217/3dp-2018-0012
- Nguyen T, Jackson T. 3D tech nologies for precision in orthodontics. Semin Orthod. 2018;24:386–392. doi: 10.1053/j.sodo.2018.10.003
- Jindal P, Juneja M, Siena FL, et al. Mechanical and geometric properties of thermoformed and 3D printed clear dental aligners. Am J Orthod Dentofacial Orthop. 2019;156:694–701. doi: 10.1016/j.ajodo.2019.05.012
- Peeters B, Kiratli N, Semeijn J. A barrier analysis for distributed recycling of 3D printing waste: Taking the maker movement perspective. J Clean Prod. 2019;241:118313. doi: 10.1016/j.jclepro.2019.118313
- Mohnish Kumar S. Cytotoxicity of 3D printed materials: an in vitro study. Sri Ramakrishna Dental College and Hospital: Coimbatore; 2019.
- Jindal P, Worcester F, Siena F L, et al. Mechanical behavior of 3D printed vs thermoformed clear dental aligner materials under non-linear compressive loading using FEM. J Mech Behav Biomed Mater. 2020;112:104045. doi: 10.1016/j.jmbbm.2020.104045 EDN: FLASFJ
- Edelmann A, English JD, Chen S J, Kasper FK. Analysis of the thickness of 3-dimensional-printed orthodontic aligners. Am J Orthod Dentofac Orthop. 2020;158:e91–e98. doi: 10.1016/j.ajodo.2020.07.029 EDN: BGVFIR
- McCarty MC, Chen SJ, English JD, Kasper F. Effect of print orientation and duration of ultraviolet curing on the dimensional accuracy of a 3-dimensionally printed orthodontic clear aligner design. Am J Orthod Dentofac Orthop. 2020;158:889–897. doi: 10.1016/j.ajodo.2020.03.023 EDN: UTBZBL
- Jindal P, Juneja M, Bajaj D, et al. Effects of post-curing conditions on mechanical properties of 3D printed clear dental aligners. Rapid Prototyp J. 2020;26:1337–1344. doi: 10.1108/rpj-04-2019-0118 EDN: GUGLNS
- Aravind Shanmugasundaram S, Razmi J, Mian MJ, Ladani L. Mechanical anisotropy and surface roughness in additively manufactured parts fabricated by stereolithography (SLA) using statistical analysis. Materials. 2020;13:2496. doi: 10.3390/ma13112496
- Ahamed SF, Kumar SM, Vijaya Kumar RK, et al. Cytotoxic evaluation of directly 3D printed aligners and Invisalign. Eur J Mol. 2020;7:1129–1140.
- Lee SY, Kim H, Kim HJ, et al. Ther mo-mechanical properties of 3D printed photocurable shape memory resin for clear aligners. Sci Rep. 2022;12(1):6246. doi: 10.1038/s41598-022-09831-4 EDN: IHQSKG
Supplementary files
