Experimental study of the effects of laser sialolithotripsy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: The effectiveness of removing concretions using sialoendoscopy depends on the size and location of the concretion in the salivary gland. According to the research results, holmium YAG lasers are the predominant intracorporeal lithotriptors in crushing urolites and sialoliths. However, to date, in comparative studies of lasers of different types in urology, the Thule laser FiberLase U2 demonstrates high efficiency. Research by urologist surgeons served as the basis for the experiment on the possibility of crushing sialoliths and analyzing the physical effects.

AIM: To evaluate the safety and time of crushing of sialolith using a thulium laser FiberLase U2 in vitro.

MATERIALS AND METHODS: Twelve round-shaped sialolith with a diameter of 5–6 mm were selected for the study. A model simulating the gland duct was developed. The fiber of the FiberLase U2 laser was fed through the proximal end of the model, and a series of lithotripsies were performed sequentially in three modes of the device at maximum and minimum values of energy and pulse frequency, fixing the temperature rise during irrigation and the resulting effects during crushing.

RESULTS: Crushing sialoliths to fragments measuring <1 mm is possible in all three laser modes. Operation at maximum values of pulse energy and frequency proceeded faster, whereas the maximum temperature rise varied from 45°C to 48°C, depending on the mode. Crushing was accompanied by pronounced cavitation and frequent sparks when the laser pulse was applied. Fragmentation at the minimum parameters of the pulse energy and frequency proceeded much slower; however, the maximum temperature rise ranged from 33°C to 40°C, and the listed effects were observed to a lesser extent in all three modes.

CONCLUSION: The use of a Thule laser for crushing concretions in all three modes at maximum pulse energy and frequency is inefficient and unsafe. Work at minimum values of the dusting and popcorning modes has shown the best results; however, further study of crushing with this laser is necessary.

About the authors

Darya V. Zhuchkova

Peoples’ Friendship University of Russia; “Endostom” clinic

Author for correspondence.
Email: DaLitvinova@mail.ru
ORCID iD: 0000-0002-9200-4257
SPIN-code: 4679-9403

Assistant

Russian Federation, 6 Miklukho-Maklaya street, 117198 Moscow; Moscow

Svyatoslav P. Sysolyatin

Peoples’ Friendship University of Russia;“Endostom” clinic; Medical and Biological University of Innovation and Continuing Education of the Burnazyan Federal Medical Biophysical Center

Email: sp-sysolyatin@yandex.ru
ORCID iD: 0000-0002-5794-9087
SPIN-code: 2050-5215

MD, Dr. Sci. (Med.), Professor

Russian Federation, 6 Miklukho-Maklaya street, 117198 Moscow; Moscow; Moscow

References

  1. Sysolyatin SP, Bannikova KA, Sysolyatin PG, Gaytova VG, Baydik OD. Endosialoscopic diagnosis and treatment of sialolithiasis. The Siberian Scientific Medical Journal. 2020;40(1):45–52. doi: 10.15372/SSMJ20200106
  2. Oddon PA, Royer G, Graillon N, et al. Treatment of salivary stones by intraductal pneumatic lithotripsy: a preliminary presentation of the StoneBreaker with sterile bag covering. J Stomatol Oral Maxillofac Surg. 2017;118(2):119–121. doi: 10.1016/j.jormas.2017.02.001
  3. Strychowsky JE, Sommer DD, Gupta MK, Cohen N, Nahlieli O. Sialendoscopy for the management of obstructive salivary gland disease: a systematic review and meta-analysis. Arch Otolaryngol Head Neck Surg. 2012;138(6):541–547. doi: 10.1001/archoto.2012.856
  4. Galdermans M, Gemels B. Success rate and complications of sialendoscopy and sialolithotripsy in patients with parotid sialolithiasis: a systematic review. Oral Maxillofac Surg. 2020;24(2):145–150. doi: 10.1007/s10006-020-00834-x
  5. Koch M, Hung SH, Su CH, et al. Intraductal lithotripsy in sialolithiasis with two different Ho:YAG lasers: presetting parameters, effectiveness, success rates. Eur Rev Med Pharmacol Sci. 2019;23(13):5548–5557. doi: 10.26355/eurrev_201907_18288
  6. Faklaris I, Bouropoulos N, Vainos NA. Sialolithiasis: Application parameters for an optimal laser therapy. J Biophotonics. 2020;13(7):e202000044. doi: 10.1002/jbio.202000044
  7. Koch M, Schapher M, Mantsopoulos K, Iro H. Intraductal lithotripsy in sialolithiasis using the Calculase III™ Ho:YAG laser: first experiences. Lasers Surg Med. 2021;53(4):488–498. doi: 10.1002/lsm.23325
  8. Schrötzlmair F, Müller M, Pongratz T, et al. Laser lithotripsy of salivary stones: Correlation with physical and radiological parameters. Lasers Surg Med. 2015;47(4):342–349. doi: 10.1002/lsm.22333
  9. Martellucci S, Pagliuca G, de Vincentiis M, et al. Ho:Yag laser for sialolithiasis of Wharton’s duct. Otolaryngol Head Neck Surg. 2013;148(5):770–774. doi: 10.1177/0194599813479914
  10. Capaccio P, Torretta S, Pignataro L, Koch M. Salivary lithotripsy in the era of sialendoscopy. Acta Otorhinolaryngol Ital. 2017;37(2):113–121. doi: 10.14639/0392-100X-1600
  11. Traxer O, Keller EX. Thulium fiber laser: the new player for kidney stone treatment? A comparison with Holmium:YAG laser. World J Urol. 2020;38(8):1883–1894. doi: 10.1007/s00345-019-02654-5
  12. Kałużny J, Klimza H, Tokarski M, et al. The holmium:YAG laser lithotripsy—a non-invasive tool for removal of midsize stones of major salivary glands. Lasers Med Sci. 2020;37(1):163–169. doi: 10.1007/s10103-020-03201-0
  13. Martov AG, Baranov AV, Biktimirov RG, Alpin DM, Biktimirov TR. Application of laser radiation in urology. Lazernaya medicina. 2020;24(1):57–62. doi: 10.37895/2071-8004-2020-24-1-57-62
  14. Martov AG, Ergakov DV, Guseinov MA, et al. Initial experience in clinical application of thulium laser contact lithotripsy for transurethral treatment of urolithiasis. Urologiia. 2018;(1):112–120. doi: 10.18565/urology.2018.1.112-120
  15. Keller EX, De Coninck V, Doizi S, Daudon M, Traxer O. Thulium fiber laser: ready to dust all urinary stone composition types. World J Urol. 2021;39(6):1693–1698. doi: 10.1007/s00345-020-03217-9
  16. Blackmon RL, Irby PB, Fried NM. Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects. J Biomed Opt. 2011;16(7):071403. doi: 10.1117/1.3564884
  17. Hardy LA, Wilson CR, Irby PB, Fried NM. Thulium fiber laser lithotripsy in an in vitro ureter model. J Biomed Opt. 2014;19(12):128001. doi: 10.1117/1.JBO.19.12.128001
  18. Popov SV, Orlov IN, Sytnik DA, et al. Thulium and holmium ureterolithotripsy: evaluation of thermal effects on the ureter by measuring the temperature of the irrigation fluid in vitro. Experimental and Clinical Urology. 2021;14(1):26–30. doi: 10.29188/2222-8543-2021-14-1-26-30
  19. Sevostyanova OA, Boshchenko VS, Osadchii VK, Parnachev VP, Polienko AK. The study of mineral composition and structure of uroliths in the residents of Tomsk district (Tomsk). Urologiia. 2017;(2):76–81. doi: 10.18565/urol.2017.2.76-81
  20. Kraaij S, Brand HS, van der Meij EH, de Visscher JG. Biochemical composition of salivary stones in relation to stone-and patient-related factors. Med Oral Patol Oral Cir Bucal. 2018;23(5):e540–e544. doi: 10.4317/medoral.22533
  21. Durbec M, Dinkel E, Vigier S, et al. Thulium-YAG laser sialendoscopy for parotid and submandibular sialolithiasis. Lasers Surg Med. 2012;44(10):783–786. doi: 10.1002/lsm.22094
  22. Zhuchkova DV, Sysolyatin SP. Experimental investigation of the effect of retropulsion in sialolithotripsy with a thulium laser. Clinical Dentistry. 2023;26(1):121–125. doi: 10.37988/1811-153X_2023_1_121

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Experimental model: a — general view; b — sieve.

Download (273KB)
3. Fig. 2. The appearance of a spark when crushing in the Fragmentation mode in the maximum values of the energy and frequency of the laser pulse.

Download (133KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».