Review of diagnostic approaches for mental and cognitive impairment in post-traumatic stress disorder
- Authors: Ovchinnikov D.V.1, Marchenko A.A.1, Gorbachev M.D.1
-
Affiliations:
- Kirov Military Medical Academy
- Issue: Vol 27, No 4 (2025)
- Pages: 559-568
- Section: Review
- URL: https://ogarev-online.ru/1682-7392/article/view/363044
- DOI: https://doi.org/10.17816/brmma683256
- EDN: https://elibrary.ru/KLGTRP
- ID: 363044
Cite item
Abstract
Post-traumatic stress disorder (PTSD) is becoming increasingly common among military personnel who have participated in combat operations, posing a significant challenge to their normal social functioning. Without effective rehabilitation programs, maladaptive behaviors can become habitual, hindering social integration. Therefore, it is crucial to start the mental recovery process as early as possible. This work evaluated the validity of the diagnostic approaches recommended by the Research Domain Criteria (RDoC) project in evaluating the PTSD severity. We used the RDoC and International Classification of Functioning, Disability, and Health (ICF) domains to evaluate PTSD-associated functional impairment. The work reviewed the syndromic heterogeneity of PTSD, the challenges of differential diagnosis, and the impact of etiological factors on the clinical presentation. We identified three main categories of functional impairment: stress-related behaviors, interpersonal interactions, and cognitive abilities. Diagnostic approaches and research paradigms were proposed to assess and standardize these categories. The RDoC and ICF concepts provide a new perspective on the pathogenesis of PTSD and development of personalized management strategies. It appears promising to enhance specialized diagnostic approaches for this patient population, considering their cultural and mental background.
About the authors
Dmitrii V. Ovchinnikov
Kirov Military Medical Academy
Author for correspondence.
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0001-8408-5301
SPIN-code: 5437-3457
MD, Cand. Sci. (Medicine), Assistant Professor
Russian Federation, Saint PetersburgAndrey A. Marchenko
Kirov Military Medical Academy
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-2906-5946
SPIN-code: 1693-5580
MD, Dr. Sci. (Medicine), Professor
Russian Federation, Saint PetersburgMikhail D. Gorbachev
Kirov Military Medical Academy
Email: vmeda-nio@mil.ru
ORCID iD: 0009-0001-4279-2515
SPIN-code: 7612-2070
scientific company operator
Russian Federation, Saint PetersburgReferences
- Stevens JS, Jovanovic T. Role of social cognition in post-traumatic stress disorder: a review and meta-analysis. Genes, Brain and Behavior. 2019;18(1):e12518. doi: 10.1111/gbb.12518
- Yehuda R. Role of neurochemical and neuroendocrine markers of fear in classification of anxiety disorders. In: Stress-Induced and Fear Circuitry Disorders. Arlington, VA: American Psychiatric Association; 2009. P. 255–264.
- Faustova AG, Yurov IY. Epigenetic and genomic mechanisms in the pathogenesis of post-traumatic stress disorder (review). Research Results in Biomedicine. 2022;8(1):15–35. doi: 10.18413/2658-6533-2022-8-1-0-2 EDN: OBRHKK
- Shamrey VK, Lytkin VM, Barazenko KV, et al. PTSD development and dynamics. Medical, Biological, and Socio-Psychological Problems of Safety in Emergency Situations. 2023;(1):68–77. doi: 10.25016/2541-7487-2023-0-1-68-77 EDN: HCCING
- Shamrey VK, Marchenko AA, Driga BV, et al. Outcomes of hospital treatment for post-traumatic stress disorder in combatants. Current Therapy of Mental Disorders. 2022;(3):14–24. doi: 10.21265/PSYPH.2022.80.39.002 EDN: TDWSAM
- Jellestad L, Vital NA, Malamud J, et al. Functional impairment in posttraumatic stress disorder: a systematic review and meta-analysis. Journal of Psychiatric Research. 2021;136:14–22. doi: 10.1016/j.jpsychires.2021.01.023 EDN: OPMUAC
- Henigsberg N, Kalember P, Petrović ZK, et al. Neuroimaging research in posttraumatic stress disorder - focus on amygdala, hippocampus and prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry. 2019;90:37–42. doi: 10.1016/j.pnpbp.2018.11.003
- Fitzgerald JM, DiGangi JA, Phan KL. Functional neuroanatomy of emotion and its regulation in PTSD. Harvard Review of Psychiatry. 2018;26(3):116–128. doi: 10.1097/HRP.0000000000000185
- Schmitz A, Grillon C. Assessing fear and anxiety in humans using the threat of predictable and unpredictable aversive events (the NPU-threat test). Nature Protocols. 2012;7(3):527–532. doi: 10.1038/nprot.2012.001
- Milad MR, Wright CI, Orr SP, et al. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol Psychiatry. 2007;62(5):446–454. doi: 10.1016/j.biopsych.2006.10.011
- Rauch SL, Shin LM, Phelps EA. Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research-past, present, and future. Biol Psychiatry. 2006;60(4):376–382. doi: 10.1016/j.biopsych.2006.06.004
- Shin LM, Bush G, Whalen PJ, et al. Dorsal anterior cingulate function in posttraumatic stress disorder. J Trauma Stress. 2007;20(5):701–712. doi: 10.1002/jts.20246
- Cherek DR, Moeller FG, Schnapp W, et al. Studies of violent and nonviolent male parolees: I. Laboratory and psychometric measurements of aggression. Biol Psychiatry. 1997;41(5):514–522. doi: 10.1016/S0006-3223(96)00330-5
- Geniole SN, MacDonell ET, McCormick CM. The Point Subtraction Aggression Paradigm as a laboratory tool for investigating the neuroendocrinology of aggression and competition. Horm Behav. 2017;92:103–116. doi: 10.1016/j.yhbeh.2017.05.001
- Golomb BA, Cortez-Perez M, Jaworski BA, et al. Point subtraction aggression paradigm: validity of a brief schedule of use. Violence Vict. 2007;22(1):95–103. doi: 10.1891/088667007780477348
- Skibsted AP, Cunha-Bang SD, Carré JM, et al. Aggression-related brain function assessed with the point subtraction aggression paradigm in fMRI. Aggressive Behavior. 2017;43(6):601–610. doi: 10.1002/ab.21718
- Pavlov IP. Lectures on the work of the cerebral hemispheres. Complete works: in 6 vols. 2nd ed., add. Moscow: USSR Academy of Sciences; 1951;3(2):318–592.
- Norrholm SD, Jovanovic T, Olin IW, et al. Fear extinction in traumatized civilians with posttraumatic stress disorder: relation to symptom severity. Biol Psychiatry. 2011;69(6):556–563. doi: 10.1016/j.biopsych.2010.10.015
- Zeidan MA, Lebron-Milad K, Thompson-Hollands J, et al. Test-retest reliability during fear acquisition and fear extinction in humans. CNS Neurosci Ther. 2012;18(4):313–317. doi: 10.1111/j.1755-5949.2011.00238.x
- McDonald S, Flanagan S, Rollins J, et al. TASIT: a new clinical tool for assessing social perception after traumatic brain injury. J Head Trauma Rehabil. 2003;18(3):219–238. doi: 10.1097/00001199-200305000-00001
- McDonald S, Flanagan S, Martin I, et al. The ecological validity of TASIT: a test of social perception. Neuropsychol Rehabil. 2004;14(3):285–302. doi: 10.1080/09602010343000237
- McCarron KK, Dasgupta MK, Campbell CA, et al. Social rehabilitation for military veterans with traumatic brain injury, psychological trauma, and chronic neuropsychiatric symptoms: intervention development and initial outcomes. Psychiatr Rehabil J. 2019;42(3):296–306. doi: 10.1037/prj0000356
- Gur RC, Sara R, Hagendoorn M, et al. A method for obtaining 3-dimensional facial expressions and its standardization for use in neurocognitive studies. J Neurosci Methods. 2002;115(2):137–143. doi: 10.1016/S0165-0270(02)00006-7
- Carter CS, Barch DM, Gur R, et al. CNTRICS final task selection: social cognitive and affective neuroscience-based measures. Schizophr Bull. 2009;35(1):153–162. doi: 10.1093/schbul/sbn155
- Zimet GD, Dahlem NW, Zimet SG, et al. The multidimensional scale of perceived social support. J Pers Assess. 1988;52(1):30–41. doi: 10.1207/s15327752jpa5201_2
- Kazarian SS, McCabe SB. Dimensions of social support in the MSPSS: factorial structure, reliability, and theoretical implications. J Community Psychol. 1991;19(2):150–160. doi: 10.1002/1520-6629(199104)19:2<150::AID-JCOP2290190206>3.0.CO;2-J
- Simon N, Roberts NP, Lewis CE, et al. Associations between perceived social support, posttraumatic stress disorder (PTSD) and complex PTSD (CPTSD): implications for treatment. Eur J Psychotraumatol. 2019;10(1):1573129. doi: 10.1080/20008198.2019.1573129
- Aupperle RL, Melrose AJ, Stein MB, et al. Executive function and PTSD: disengaging from trauma. Neuropharmacology. 2012;62(2):686–694. doi: 10.1016/j.neuropharm.2011.02.008
- Dutra SJ, Marx BP, McGlinchey R, et al. Reward ameliorates posttraumatic stress disorder-related impairment in sustained attention. Chronic Stress. 2018;2:2470547018812400. doi: 10.1177/2470547018812400
- Esterman M, Noonan SK, Rosenberg M, et al. In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention. Cerebral Cortex. 2013;23(11):2712–2723. doi: 10.1093/cercor/bhs261
- Ashley V, Honzel N, Larsen J, et al. Attentional bias for trauma-related words: exaggerated emotional Stroop effect in Afghanistan and Iraq war veterans with PTSD. BMC Psychiatry. 2013;13(1):86. doi: 10.1186/1471-244X-13-86 EDN: EEDHLF
- Sierk A, Manthey A, King J, et al. Allocentric spatial memory performance predicts intrusive memory severity in posttraumatic stress disorder. Neurobiol Learn Mem. 2019;166:107093. doi: 10.1016/j.nlm.2019.107093
- Johnsen GE, Asbjørnsen AE. Verbal learning and memory impairments in posttraumatic stress disorder: the role of encoding strategies. Psychiatry Research. 2009;165(1-2):68–77. doi: 10.1016/j.psychres.2007.10.011
- Sternberg S. High-speed scanning in human memory. Science. 1966;153(3736):652–654. doi: 10.1126/science.153.3736.652 EDN: IDCNGR
- Vinkhuyzen AAE, Van Der Sluis S, Boomsma DI, et al. Individual differences in processing speed and working memory speed as assessed with the Sternberg memory scanning task. Behavior Genetics. 2010;40(3):315–326. doi: 10.1007/s10519-009-9315-7 EDN: NZEGTH
- Sun X, Yuan H. Promising applications of non-invasive brain stimulation on military cognition enhancement: a long way to go. Gen Psychiatr. 2023;36(5):e101264. doi: 10.1136/gpsych-2023-101264 EDN: TWXAXK
- Anderson JR, Zhang Q, Borst JP, et al. The discovery of processing stages: extension of Sternberg's method. Psychol Rev. 2016;123(5):481–509. doi: 10.1037/rev0000030
- Rensink RA. Change detection. Ann Rev Psychol. 2002;53(1):245–277. doi: 10.1146/annurev.psych.53.100901.135125 EDN: YIVHBM
- Zhao C, Vogel E, Awh E. Change localization: a highly reliable and sensitive measure of capacity in visual working memory. Atten Percept Psychophys. 2023;85(5):1681–1694. doi: 10.3758/s13414-022-02586-0 EDN: JIVKSU
- Truong J, Buschkuehl M, Smith-Peirce RN, et al. Change-detection training and its effects on visual processing skills. Sci Rep. 2022;12(1):12646. doi: 10.1038/s41598-022-16755-6 EDN: AGJAGZ
- Kirchner WK. Age differences in short-term retention of rapidly changing information. J Exp Psychol. 1958;55(4):352–358. doi: 10.1037/h0043688
- Miró-Padilla A, Bueichekú E, Ventura-Campos N, et al. Long-term brain effects of N-back training: an fMRI study. Brain Imaging Behav. 2019;13(4):1115–1127. doi: 10.1007/s11682-018-9925-x EDN: MHQPOM
- Pergher V, Wittevrongel B, Tournoy J, et al. N-back training and transfer effects revealed by behavioral responses and EEG. Brain Behav. 2018;8(11):e01136. doi: 10.1002/brb3.1136
- Dretsch MN, Thiel KJ, Athy JR, et al. Mood symptoms contribute to working memory decrement in active-duty soldiers being treated for posttraumatic stress disorder. Brain Behav. 2012;2(4):357–364. doi: 10.1002/brb3.53
- Judah MR, Renfroe JB, Wangelin BC, et al. Hyperarousal symptoms explain the relationship between cognitive complaints and working memory performance in veterans seeking PTSD treatment. J Head Trauma Rehabil. 2018;33(4):E10–E16. doi: 10.1097/HTR.0000000000000347
- Mathew AS, Lotfi S, Bennett KP, et al. Association between spatial working memory and re-experiencing symptoms in PTSD. J Behav Ther Exp Psychiatry. 2022;75:101714. doi: 10.1016/j.jbtep.2021.101714 EDN: UBMVME
- Runyan A, Philippi CL, Pessin S, et al. Comparing resting-state connectivity of working memory networks in US service members with mild traumatic brain injury and posttraumatic stress disorder. Brain Res. 2022;1796:148099. doi: 10.1016/j.brainres.2022.148099 EDN: TZMPVL
- Ragland JD, Ranganath C, Barch DM, et al. Relational and item-specific encoding (RISE): task development and psychometric characteristics. Schizophr Bull. 2012;38(1):114–124. doi: 10.1093/schbul/sbr146
- Kitayama N, Vaccarino V, Kutner M, et al. Magnetic resonance imaging (MRI) measurement of hippocampal volume in posttraumatic stress disorder: a meta-analysis. J Affect Disord. 2005;88(1):79–86. doi: 10.1016/j.jad.2005.05.014
- Shin LM, Liberzon I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology. 2010;35(1):169–191. doi: 10.1038/npp.2009.83
- Blair KS, Vythilingam M, Crowe SL, et al. Cognitive control of attention is differentially affected in trauma-exposed individuals with and without post-traumatic stress disorder. Psychol Med. 2013;43(1):85–95. doi: 10.1017/S0033291712000840
- Bomyea J, Amir N, Lang AJ. The relationship between cognitive control and posttraumatic stress symptoms. J Behav Ther Exp Psychiatry. 2012;43(2):844–848. doi: 10.1016/j.jbtep.2011.11.002
- Rosvold HE, Mirsky AF, Sarason I, et al. A continuous performance test of brain damage. J Consult Psychol. 1956;20(5):343–350. doi: 10.1037/h0043220
- Janowich JR, Cavanagh JF. Delay knowledge and trial set count modulate use of proactive versus reactive control: a meta-analytic review. Psychon Bull Rev. 2018;25(4):1249–1268. doi: 10.3758/s13423-018-1502-1 EDN: CLABCY
- Logan GD, Cowan WB. On the ability to inhibit thought and action: a theory of an act of control. Psychol Rev. 1984;91(3):295–327. doi: 10.1037/0033-295X.91.3.295
- Grillon C, Robinson OJ, Krimsky M, et al. Anxiety-mediated facilitation of behavioral inhibition: threat processing and defensive reactivity during a go/no-go task. Emotion. 2017;17(2):259–266. doi: 10.1037/emo0000219
- Korgaonkar MS, Felmingham KL, Malhi GS, et al. Changes in neural responses during affective and non-affective tasks and improvement of posttraumatic stress disorder symptoms following trauma-focused psychotherapy. Transl Psychiatry. 2023;13(1):85. doi: 10.1038/s41398-023-02381-x EDN: QSTLDE
- Logan GD, Cowan WB, Davis KA. On the ability to inhibit simple and choice reaction time responses: a model and a method. J Exp Psychol Hum Percept Perform. 1984;10(2):276–291. doi: 10.1037/0096-1523.10.2.276
- Amick MM, Clark A, Fortier CB, et al. PTSD modifies performance on a task of affective executive control among deployed OEF/OIF veterans with mild traumatic brain injury. J Int Neuropsychol Soc. 2013;19(7):792–801. doi: 10.1017/S1355617713000541
- Sadeh N, Spielberg JM, Hayes JP. Impulsive responding in threat and reward contexts as a function of PTSD symptoms and trait disinhibition. J Anxiety Disord. 2018;53:76–84. doi: 10.1016/j.janxdis.2017.09.008
- Swick D, Honzel N, Larsen J, et al. Impaired response inhibition in veterans with post-traumatic stress disorder and mild traumatic brain injury. J Int Neuropsychol Soc. 2012;18(5):917–926. doi: 10.1017/S1355617712000466
- Miller LN, Forbes D, McFarlane AC, et al. Cumulative trauma load and timing of trauma prior to military deployment differentially influences inhibitory control processing across deployment. Sci Rep. 2023;13(1):21414. doi: 10.1038/s41598-023-48747-5 EDN: SSULRQ
- Echiverri-Cohen A, Spierer L, Perez M, et al. Randomized-controlled trial of response inhibition training for individuals with PTSD and impaired response inhibition. Behav Res Ther. 2021;143:103885. doi: 10.1016/j.brat.2021.103885 EDN: HNNLQV
- Harlé KM, Spadoni AD, Norman SB, et al. Neurocomputational changes in inhibitory control associated with prolonged exposure therapy. J Trauma Stress. 2020;33(4):500–510. doi: 10.1002/jts.22461
- Smits FM, Geuze E, Schutter DJ, et al. Effects of tDCS during inhibitory control training on performance and PTSD, aggression and anxiety symptoms: a randomized-controlled trial in a military sample. Psychol Med. 2022;52(16):3964–3974. doi: 10.1017/S0033291722000466 EDN: ZELEKV
- Gehring WJ, Liu Y, Orr JM, et al. The error-related negativity. Perspect Psychol Sci. 2018;13(2):200–204. doi: 10.1177/1745691617715310
- Perlstein WM, Carter CS, Barch DM, et al. The Stroop task and attention deficits in schizophrenia: a critical evaluation of card and single-trial Stroop methodologies. Neuropsychology. 1998;12(3):414–425. doi: 10.1037/0894-4105.12.3.414
- Stroop JR. Studies of interference in serial verbal reactions. J Experimental Psychology. 1935;18(6):643–662. doi: 10.1037/h0054651
- Kimble MO, Frueh BC, Marks L. Does the modified Stroop effect exist in PTSD? Evidence from dissertation abstracts and the peer reviewed literature. J Anxiety Disord. 2009;23(5):650–655. doi: 10.1016/j.janxdis.2009.02.002
- Blekic W, Rossignol M, D'Hondt F. Examining attentional avoidance in post-traumatic stress disorder: an exploratory 'Face in the Crowd' paradigm using eye-tracking. Eur J Psychotraumatol. 2025;16(1):2462489. doi: 10.1080/20008066.2025.2462489 EDN: XKAHXM
- Kimble MO, Fleming K, Bandy C, et al. Eye tracking and visual attention to threatening stimuli in veterans of the Iraq war. J Anxiety Disord. 2010;24(3):293–299. doi: 10.1016/j.janxdis.2009.12.006
- Olatunji BO, Armstrong T, Bilsky SA, et al. Threat modulation of visual search efficiency in PTSD: a comparison of distinct stimulus categories. Psychiatry Res. 2015;229(3):975–982. doi: 10.1016/j.psychres.2015.05.103
- Potter MC. Short-term conceptual memory for pictures. J Exp Psychol Hum Learn. 1976;2(5):509–522. doi: 10.1037/0278-7393.2.5.509
- Olatunji BO, Armstrong T, McHugo M, et al. Heightened attentional capture by threat in veterans with PTSD. J Abnormal Psychology. 2013;122(2):397–409. doi: 10.1037/a0030447
Supplementary files
