Nephrite pebbles of the Vitim Highlands and the Hetian area (China): a comparative mineralogical and geochemical analysis

Cover Page

Cite item

Full Text

Abstract

Research subject. Placer nephrites of the Vitim Highlands and the Hetian area in northwest China.Aim. Comparison of mineralogical and geochemical characteristics of nephrite pebbles from the Tsipa River in the north-east of the Republic of Buryatia and the world’s largest accumulation of placer nephrite from the Yurunkash and Karakash Rivers in the Xinjiang Uygur Autonomous Region, Northwest China.Materials and methods. The mineral composition of placer nephrite from the Vitim Highlands was studied by X-ray diffraction on a PowDix600 powder diffractometer; the diffractograms were interpreted using Almaz software. The chemical composition was studied by SEM (EDX) on a Merlin Carl Zeiss scanning electron microscope equipped with an AZtec X-Max energy dispersion spectrometer (Oxford Instruments). The content of 59 trace elements and rare earth elements was determined by ICP MS method on an iCAP Qc ThermoFisher Scientific inductively coupled plasma mass spectrometer. Statistical processing of the analytical results was carried out using STATISTICA and Excel software programmes.Results. The main mineral of light-coloured nephrite pebbles is tremolite, which can change into actinolite, accompanied by a significant (10 times) increase in the FeO content with the acquisition of dark green and black colouring of placer nephrite. Petrochemical diagrams Mg/(Mg + Fe2+), MgO + FeO–FeO, Al2O3– Na2O + K2O, SiO2–CaO + Na2O + K2O allowed to obtain distinct differences between the studied objects. All studied nephrite pebbles have common characteristics of rare earth elements (REE) behaviour: negative Eu-anomaly, pronounced right-hand slope, moderate enrichment of light-REEs, practically flat distribution of heavy-REEs.Conclusions. The genetic similarity of placer nephrite from both nephrite-bearing areas is confirmed by the common distribution of REE in them. The distinctive features of nephrite pebbles of the Vitim Highlands are elevated content of alkalis associated with the participation of acidic intrusions in the formation of the primary source of nephrite, and a developed staining edge acquired under exogenous conditions. Black nephrite of the Karakash River consists predominantly of actinolite, which are formed at elevated levels of ferric oxide. The similarity of alluvial nephrite of the Tsipa, Yurungkash and Karakash rivers testifies to the great prospects of placers in the Vitim region and the need for specialized geological exploration.

About the authors

V. F. Sotnikova

Kazan Federal University, Institute of Geology and Petroleum Technologies

Email: vasilina0917@gmail.com

R. Kh. Sungatullin

Kazan Federal University, Institute of Geology and Petroleum Technologies

Email: Rafael.Sungatullin@kpfu.ru

E. V. Kislov

N.L. Dobretsov Geological Institute, SB RAS

Email: evg-kislov@ya.ru

References

  1. Бортников Н.С., Волков А.В., Лаломов А.В., Бочнева А.А., Иванова Ю.Н., Лаломов Д.А. (2024) Роль россыпных месторождений в обеспечении воспроизводства минерально-сырьевой базы дефицитных видов стратегического минерального сырья России на современном этапе. Rus. J. Earth Sci., 24(1), ES1012. https://doi.org/10.2205/2024es000897
  2. Игнатов П.А., Хэн Ч. (2015) Типы россыпей нефрита Кунь-Луня и прилегающей Таримской депрессии Китая. Изв. вузов. Геология и разведка, (3), 26-34.
  3. Кислов Е.В., Попов М.П., Нурмухаметов Ф.М., Посохов В.Ф., Вантеев В.В. (2023а) Нефрит месторождения Нырдвоменшор, Полярный Урал. Литосфера, 23(2), 270-291. https://doi.org/10.24930/1681-9004-2023-23-2-270-291
  4. Кислов Е.В., Худякова Л.И., Николаев А.Г. (2023б) Отходы переработки аподоломитового нефрита и направление их использования. Горные науки и технологии, 8(3), 195-206. https://doi.org/10.17073/2500-0632-2023-01-75
  5. Лаломов А.В., Бочнева А.А. (2024) Россыпные месторождения России как источник стратегических видов минерального сырья. Минеральные ресурсы России. Экономика и управление, 3(188), 5-18.
  6. Портнов А.М., Дронова Н.Д. (2016) Неповторимый нефрит. Природа, (12), 18-23.
  7. Словарь по геологии россыпей. (1985) (Под ред. Н.А. Шило). М.: Недра, 197 с.
  8. Сотникова В.Ф., Сунгатуллин Р.Х., Кислов Е.В. (2025) Первые минералого-геохимические данные о россыпном нефрите Витимского нагорья, Республика Бурятия. Литология и полез. ископаемые, (3). 346-360. https://doi.org/10.31857/S0024497X25030058
  9. Сутурин А.Н., Замалетдинов Р.С., Секерина Н.В. (2015) Месторождения нефрита. Иркутск: ИГУ, 377 с. Юргенсон Г.Л. (2001) Ювелирные и поделочные камни Забайкалья. Новосибирск: Наука, 390 с.
  10. Adams C.J., Beck R.J., Campbell H.J. (2007) Characterisation and origin of New Zealand nephrite jade using its strontium isotopic signature. Lithos, 97, 307-322.
  11. Boyd W.F., Wight W. (1983) Gemstones of Canada. J. Gemm., 18(6), 544-562.
  12. Jing Y., Liu Y. (2022) Genesis and mineralogical studies of zircons in the Alamas, Yurungkash and Karakash Rivers nephrite deposits, Western Kunlun, Xinjiang, China. Ore Geol. Rev., 149, 105087. https://doi.org/10.1016/j.oregeorev.2022.105087
  13. Jutras J.P., Williams B., Williams C., Rossman G.R. (2023) Nephrite Jade from Washington State, USA, including a New Variety Showing Optical Phenomena. J. Gemm., 38(5), 494-511. http://doi.org/10.15506/JoG.2023.38.5.494
  14. Kislov E.V. (2024) Kavokta Deposit, Middle Vitim mountain country, Russia: composition and genesis of dolomite type nephrite. Geosci., 14(11), 303. https://doi.org/10.3390/geosciences14110303
  15. Kislov E.V., Popov M.P., Nurmukhametov F.M., Posokhov V.F., Vanteev V.V. (2023) Nyrdvomenshor nephrite deposit, Polar Urals, Russia. Minerals, 13(6), 767. https://doi.org/10.3390/min13060767
  16. Liu Y., Deng J., Shi G., Sun X., Yang L. (2011a) Geochemistry and petrogenesis of placer nephrite from Hetian, Xinjiang, Northwest China. Ore Geol. Rev., 41(1), 122-132. https://doi.org/10.1016/j.oregeorev.2011.07.004
  17. Liu Y., Deng J., Shi G., Yui T.F., Zhang G., Abuduwayiti M., Yang L., Sun X. (2011b) Geochemistry and petrology of nephrite from Alamas, Xinjiang, NW China. J. Asian Earth Sci., 42(3), 440-451. https://doi.org/10.1016/j.jseaes.2011.05.012
  18. Liu Y., Deng J., Shi G.H., Lu T., He H., Ng Y.-N., Shen Ch., Yang L., Wang Q. (2010) Chemical zone of nephrite in Alamas, Xinjiang, China. Res. Geol., 60(3), 249-259. https://doi.org/10.1111/j.1751-3928.2010.00135.x
  19. Liu Y., Zhang R., Zhang Zh., Shi G., Zhang Q., Abuduwayiti M., Liu J. (2015) Mineral inclusions and SHRIMP U-Pb dating of zircons from the Alamas nephrite and granodiorite: Implications for the genesis of a magnesian skarn deposit. Lithos, 212-215, 128-144. https://doi.org/10.1016/j.lithos.2014.11.002
  20. Liu Y., Zhang R.-Q., Maituohuti A., Wang Ch., Zhang Sh., Shen Ch., Zhang Zh., He M., Zhang Y., Yang X. (2016) SHRIMP U-Pb zircon ages, mineral compositions and geochemistry of placer nephrite in the Yurungkash and Karakash River deposits, West Kunlun, Xinjiang, northwest China: implication for a magnesium skarn. Ore Geol. Rev., 72(1), 699-727. https://doi.org/10.1016/j.oregeorev.2015.08.023
  21. McDonough W.F., Sun S.S. (1995) The composition of the Earth. Chem. Geol., 120, 223-253.
  22. Mustoe G.E. (2024a) Nephrite Jade and Related Rocks from Western Washington State, USA: A Geologic Overview. Minerals, 14, 1186. https://doi.org/10.3390/min14121186
  23. Mustoe G.E. (2024b) Pleistocene Glacial Transport of Nephrite Jade from British Columbia, Canada, to Coastal Washington State, USA. Geosci., 14, 242. https://doi.org/10.3390/geosciences14090242

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Sotnikova V.F., Sungatullin R.K., Kislov E.V.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).