Regular relations of the composition, structure and properties of crystals of hydrogen-containing compounds

Cover Page

Cite item

Full Text

Abstract

Research subject. Crystals of hydrogen-containing compounds belonging to the superprotonic family. Aim. To obtain knowledge about regular relations between composition, atomic structure, real structure and physical properties of materials, with the purpose of elucidating processes occurring in condensed state and forming the basis for modification of known or obtaining new compounds. Materials and methods. Experimental data were obtained using a set of complementary physical methods, including structural analysis using X-rays, synchrotron radiation and neutrons, optical microscopy, and atomic force microscopy. Results. Experimental data on the atomic structure, real structure, and physical properties of superprotonic crystals, including systems of hydrogen bonds and their changes, were obtained. Conclusions. The physical properties of superprotonic crystals are significantly affected by hydrogen bonding systems and their changes, primarily by the formation of dynamically disordered hydrogen bonds with energetically equivalent positions of hydrogen atoms. When carrying out diagnostics of crystalline samples, account should be taken of their real structure, including the structure of surface layers and the presence of crystallization water. These factors may affect the measured physical parameters, the boundaries of existence of phases, the formation of a multiphase state under variations in temperature.

About the authors

I. P. Makarova

A.V. Shubnikov Institute of Crystallography of Kurchatov complex “Crystallography and photonics” of NRC “Kurchatov Institute”

Email: makarova@crys.ras.ru

E. V. Selezneva

A.V. Shubnikov Institute of Crystallography of Kurchatov complex “Crystallography and photonics” of NRC “Kurchatov Institute”

A. L. Tolstikhina

A.V. Shubnikov Institute of Crystallography of Kurchatov complex “Crystallography and photonics” of NRC “Kurchatov Institute”

R. V. Gainutdinov

A.V. Shubnikov Institute of Crystallography of Kurchatov complex “Crystallography and photonics” of NRC “Kurchatov Institute”

References

  1. Гайнутдинов Р.В., Толстихина А.Л., Селезнева Е.В., Макарова И.П. (2021) Комбинированная микроскопия сегнетоэластических кристаллов (NH4)3H(SeO4)2. Изв. РАН. Сер. физ., 85(8), 1082-1089. https://doi.org/10.31857/S036767652108007X
  2. Дмитриев В.П., Чернышов Д.Ю., Дядькин В.А., Макарова И.П., Леонтьев И.Н., Андроникова Д.А., Бронвальд Ю.А., Бурковский Р.Г., Вахрушев С.Б., Филимонов А.В., Григорьев С.В. (2018) Кристаллография с использованием синхротронного излучения: эксперименты российских пользователей на дифракционной станции BM01 ESRF. Поверхность. Рентгеновские, синхротронные и нейронные исследования, 12(5), 3-17. https://doi.org/10.7868/S0207352818050013
  3. Макарова И.П. (2015) Суперпротоники – кристаллы с перестраивающимися водородными связями. Физика твердого тела, 57(3), 432-439.
  4. Colomban P. (2019) Proton conductors and their applications: A tentative historical overview of the early researches. Solid State Ionics, 334, 125-144. https://doi.org/10.1016/j.ssi.2019.01.032
  5. Dupuis A.-C. (2011) Proton exchange membranes for fuel cells operated at medium temperatures: materials and experimental techniques. Progress in Materials Sci., 56, 289-327. http://doi.org/10.1016/j.pmatsci.2010.11.001
  6. Gainutdinov R.V., Selezneva E.V., Makarova I.P., Vasil’-ev A.L., Tolstikhina A.L. (2021) Microscopic studies of the surface layer of (NH4)3H(SeO4)2 crystals subject to phase transformations. Surfaces and Interfaces, 23, 100952-1-9. https://doi.org/10.1016/j.surfin.2021.100952
  7. Gilli G., Gilli P. (2009) The nature of the hydrogen bond. IUCr book series. Oxford: Oxford University Press, 318 p.
  8. Kreuer K.-D. (1996) Proton conductivity: materials and applications. Chem. Mater., 8, 610-641. https://doi.org/10.1021/cm950192a
  9. Makarova I.P. (1993) Thermal vibrations of atoms and phase transition in RbHSeO4 and NH4HSeO4 single crystals. Acta Cryst. B, 49, 11-18. http://doi.org/10.1107/S010876819200613X
  10. Makarova I., Grebenev V., Dmitricheva E., Dolbinina V., Chernyshov D. (2014) MmHn(XO4)(m + n)/2 crystals: structure, phase transitions, hydrogen bonds, conductivity.
  11. I. K9H7(SO4)8∙Н2О crystals – a new representative of the family of solid acid conductors. Acta Cryst. B, 70, 218-226. https://doi.org/10.1107/S2052520613029892
  12. Makarova I., Selezneva E., Canadillas-Delgado L., Mos-sou E., Vasil’ev A., Komornikov V., Devishvili A. (2021) Crystal structure, hydrogen bonds and thermal transformations of superprotonic conductor Cs6(SO4)3(H3PO4)4. Acta Cryst. B, 77, 266-274. https://doi.org/10.1107/S2052520621001840
  13. Makarova I.P., Shuvalov L.A., Simonov V.I. (1988) Structural phase transitions in Rb3H(SeO4)2 single crystals. Ferroelectrics, 79, 111-116. http://dx.doi.org/10.1080/00150198808229410
  14. Paschos O., Kunze J., Stimming U., Maglia F. (2011) A review on phosphate based, solid state, protonic conductors for intermediate temperature fuel cells. J. Phys.: Condens. Matter, 23, 234110-1-26. http://dx.doi.org/10.1088/0953-8984/23/23/234110
  15. Pawlaczyk Cz., Pawłowski A., Połomska M., Pogorzelec-Glaser K., Hilczer B., Pietraszko A., Markiewicz E., Ławniczak P., Szcześniak L. (2010) Anhydrous proton conductors for use as solid electrolytes. Phase Transitions, 83, 854-867. http://dx.doi.org/10.1080/01411594.2010.509159
  16. Pimentel G.C., McClellan A.L. (1960) The hydrogen bond. San Francisco: W.H. Freeman, 475 p.
  17. Selezneva E., Makarova I., Gainutdinov R., Tolstikhina A., Malyshkina I., Somov N., Chuprunov E. (2023) Conductivity, its anisotropy and changes as a manifestation of the features of the atomic and real structures of superprotonic3H(SO4)2 crystals. Acta Cryst. B, 79, 46-54. https://doi.org/10.1107/S2052520622011751

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Makarova I.P., Selezneva E.V., Tolstikhina A.L., Gainutdinov R.V.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).