Negative thermal expansion of β-Rb2SO4

Cover Page

Cite item

Full Text

Abstract

Research subject. The low-temperature modification of β-Rb2SO4 sulfate (Pmcn). Aim. Low-temperature study of the thermal expansion of β-Rb2SO4 by high-temperature powder X-ray diffraction in comparison with the crystal structure, as well as interpretation of the anisotropy of β-Rb2SO4 thermal expansion. Materials and Method. Powder X-ray diffraction and high-temperature powder X-ray diffraction. Results. The thermal expansion of β-Rb2SO4 sulfate was studied for the first time using low-temperature powder thermal X-ray diffraction in comparison with the crystal structure. The phase composition was confirmed by powder X-ray diffraction. The thermal expansion of β-Rb2SO4 is practically isotropic. Across the temperature range from –177 to –140°C, the sulfate experiences negative thermal expansion. A further increase in temperature leads to a change in its thermal expansion, which becomes positive. It is proposed to consider the crystal structure of β-Rb2SO4 sulfate as a mixed framework of [RbSO4]–1, which, in turn, consists of fundamental building units (microblocks) of Rb(SO4)6. Across the temperature range from room temperature to –100°C, the maximum expansion of β-Rb2SO4 sulfate occurs along the a axis. The minimum thermal expansion is observed along the c-axis, along the columns consisting of microblocks (αa = 65.4(3)∙10–6°C–1, αb = 59.7(2)∙10–6°C–1, αc = 58.6(2)∙10–6°C–1 at +25°C). In the temperature range from –177 to –140°C, thermal expansion is negative in all three directions (αa = –10.3(3)∙10–6°C–1, αb = –8.6(2)∙10–6°C–1, αc = –9.7(2)∙10–6°C–1 at –170°C). Conclusion. The thermal expansion of β-Rb2SO4 sulfate in the low-temperature range (from –177 to –25°C) was studied for the first time, its structural interpretation was performed. A comparison was given with the thermal expansion of isostructural β-K2SO4.

About the authors

A. P. Shablinskii

Institute of Silicate Chemistry, RAS

Email: shablinskii.andrey@mail.ru

S. V. Demina

Institute of Silicate Chemistry, RAS; Saint Petersburg State University, Institut des Géosciences

Email: demina.sofiya@bk.ru

R. S. Bubnova

Institute of Silicate Chemistry, RAS

Email: rimma_bubnova@mail.ru

S. K. Filatov

Saint Petersburg State University, Institut des Géosciences

Email: ilatov.stanislav@gmail.com

References

  1. Бубнова Р.С., Фирсова В.А., Волков С.Н., Филатов С.К. (2018) RietveldToTensor: программа для обработки порошковых рентгендифракционных данных, полученных в переменных условиях. Физика и химия стекла, 44(1), 48-60.
  2. Воронков А.А., Илюхин В.В., Белов Н.В. (1975) Кристаллохимия смешанных каркасов. Принципы их формирования. Кристаллография, 20(3), 556-567.
  3. Плющев В.Е. (1962) О бинарных системах Me2SO4-CaSO4. Журн. неорган. химии, 66, 1377-1380. Филатов С.К. (1990) Высокотемпературная кристаллохимия. Л.: Недра, 288 с.
  4. Aksenov S.M., Deyneko D.V. (2022) Crystal chemistry and design of new materials with mineral-related structures: the structure-properties relationship. Herald of the Kola Science Centre of the RAS, 14, 7-16, https://doi.org/10.37614/2307-5228.2022.14.2.001
  5. Bindi L., Nespolo M., Krivovichev S.V., Chapuis G., Biagioni C. (2020) Producing highly complicated materials. Nature does it better. Rep. Progr. Phys., 83, 106501.
  6. Dang P., Yun X., Zhang Q., Liu D., Lian H., Shang M., Lin J. (2021) Thermally stable and highly efficient red-emitting Eu3+-doped Cs3GdGe3O9 phosphors for WLEDs: non-concentration quenching and negative thermal expansion. Light Sci. Appl., 10, 29. https://doi.org/10.1038/s41377-021-00469-x
  7. Fischmeister H.F. (1962) Roentgenkristallographische Ausdehnungsmessungen an einigen Alkalisulfaten. Monatshefte fuer Chemie, 93, 420-434. https://doi.org/10.1007/BF00903139
  8. Iizumi M., Axe J.D., Shirane G., Shimaoka K. (1977) Structural phase transformation in K2SeO4. Phys. Rev. B, 15, 4392-4411. https://doi.org/10.1103/PhysRevB.15.4392
  9. Korytnaya F.M., Pokrovsky A.N., Degtyarev P.A. (1980) Investigation of phase equilibria in the systems K2SO4-Sc2(SO4)3, Rb2SO4-Sc2(SO4)3 and Cs2SO4-Sc2(SO4)3. Thermochim. Acta, 41, 141-146. https://doi.org/10.1016/0040-6031(80)80058-X.
  10. Krishnan R.S., Srinivasan R., Devanarayanan S. (1979) Thermal expansion of crystals. Elsevier, 305 p.
  11. Krivovichev S.V. (2008) Minerals as Advanced Materials I. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77123-4
  12. Mary T.A., Evans J.S.O., Vogt T., Sleight A.W. (1996) Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8. Science, 272, 90-92. https://doi.org/10.1126/science.272.5258.90
  13. Mueller N. (1910) System Rb2SO4-CaSO4. Solid solution regions do not obey phase rule. Neues Jahrb. Mineral., Geol. Palaeontol., Beilageband, 30, 1-54.
  14. Nord A.G. (1974) Low-temperature rubidium sulphate. Acta Cryst., B30, 1640-1641. https://doi.org/10.1107/S0567740874005498
  15. Ogg A. (1928) The crystal structures of the isomorphic sulphates of K, NH4, Rb, and Cs. Philos. Mag., 5, 354-371. https://doi.org/10.1080/14786440208564474
  16. Ojima K., Nishihata Y., Sawada A. (1995) Structure of Potassium Sulfate at Temperatures From 296 K Down to 15 K. Acta Cryst., B51, 287-293. https://doi.org/10.1107/S0108768194013327
  17. Sasaki A., Akihiro H., Hisashi K., Norihiro M. (2010). Ab initio crystal structure analysis based on powder diffraction data used PDXL. Rigaku J., 26, 10-14.
  18. Shablinskii A.P., Filatov S.K., Biryukov Y.P. (2023) Crystal structures inherited from parent high-temperature disordered microblocks: Ca2SiO4, Na2SO4–K2SO4 sulfates, and related minerals (bubnovaite and dobrovolskyite). Phys. Chem. Miner., 50, 30. https://doi.org/10.1007/s00269-023-01253-6
  19. Shablinskii A.P., Filatov S.K., Krivovichev S.V., Vergasova L.P., Moskaleva S.V., Avdontseva E.Yu., Knyazev A.V., Bubnova R.S. (2021) Dobrovolskyite, Na4Ca(SO4)3, a new fumarolic sulfate from the Great Tolbachik fissure eruption, Kamchatka Peninsula, Russia. Miner. Mag., 85, 233-241. https://doi.org/10.1180/mgm.2021.9
  20. Shannon R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst., A32, 751-767. https://doi.org/10.1107/S0567739476001551
  21. Takenaka K. (2018) Progress of research in negative thermal expansion materials: paradigm shift in the control of thermal expansion. Front. Chem., 6, 267. https://doi.org/10.3389/fchem.2018.00267
  22. Tutton A.E. (1899) The thermal deformations of the crystallised normal sulphates of potassium, rubidium, and caesium. Philos. Transact. Royal Soc. A, 192, 350-353. https://doi.org/10.1098/rspl.1898.0112
  23. Unruh H.G. (1970) The spontaneous polarization of (NH4)2SO4. Solid State Commun., 8, 1951-1954. https://doi.org/10.1016/0038-1098(70)90666-6
  24. Weber H.J., Schulz M., Schmitz S., Granzin J., Siegert H. (1989) Determination and structural application of anisotropic bond polarisabilities in complex crystals. J. Phys.: Condens. Matter., 1, 8543-8547. https://doi.org/10.1088/0953-8984/1/44/025
  25. Yakubovich O.V., Khasanova N., Antipov E.V. (2020) Mineral-inspired materials: synthetic phosphate analogues for battery applications, Minerals, 10, 524.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Shablinskii A.P., Demina S.V., Bubnova R.S., Filatov S.K.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).