Synthesis of djerfisherite K6Fe24.5S26Cl by isobaric-isothermal holding method at T = 500 °C and P = 500 atm

Cover Page

Cite item

Full Text

Abstract

   Research subject. A series of experiments on the synthesis of ferrous djerfisherite by the isobaric-isothermal holding method were carried out. We used standard autoclaves made of alloy steel with a volume of 200 cm3 as high-pressure vessels. The starting material for the synthesis was a mixture of FeS2 (pyrite) + Fe2O3 + K2CO3 + KCl, ground into powder, metallic aluminum and fluid (water + ethanol) were used to maintain reducing conditions.   Aim. To establish the optimal parameters for the synthesis of djerfisherite and to obtain a representative amount of djerfisherite for further studies of its stability under controlled conditions (T, P, fO2, etc.).   Methods. In order to identify the obtained phases, we first carried out X-ray diffraction analysis and then Raman spectroscopy; scanning electron microscopy with energy-dispersive spectrometry were used to determine the chemical composition of all newly formed phases.   Results. Djerfisherite of the composition K6Fe24.5S26Cl was synthesized together with troilite ± sylvite. Semi-quantitative ratios of newly formed phases indicate the presence of djerfisherite in amounts from 30 to 80 wt %. The Raman spectra of synthetic djerfisherite correspond to previous studies.   Conclusions. Favorable parameters for the synthesis of djerfisherite are: T = 500°C, P = 500 atm, t = 168 hours. As a result of experiments we synthesized djerfisherite (72 wt %), together with troilite (21 wt %) and sylvite (7 wt %), with a total mass of about 15 g.

About the authors

S. V. Potapov

Institute of the Earth’s Crust, SB RAS

Email: potapovsv@crust.irk.ru

I. S. Sharygin

Institute of the Earth’s Crust, SB RAS

V. Ya. Medvedev

Institute of the Earth’s Crust, SB RAS

L. A. Ivanova

Institute of the Earth’s Crust, SB RAS

S. V. Rashchenko

V.S. Sobolev Institute of Geology and Mineralogy, SB RAS

Yu. D. Shcherbakov

A.P. Vinogradov Institute of Geochemistry, SB RAS

References

  1. Белов Н.В., Годовиков А.А., Бакакин В.В. (1982) Очерки по теоретической минералогии. М.: Наука, 206 с.
  2. Горбачев Н.С., Некрасов И.Я. (1980) Особенности образования синтетических и природных сульфидов калия. Докл. АН СССР, 251(3), 682-685.
  3. Дмитриева М.Т., Илюхин В.В. (1975) Кристаллическая структура джерфишерита. Докл. АН СССР, 223(2), 343-346.
  4. Панина Л.И., Исакова А.Т. (2019) Джерфишерит из монтичеллитовых пород Крестовской интрузии, Полярная Сибирь. Петрология, 27(2), 187-205.
  5. Шарыгин И.С., Головин А.В., Похиленко Н.П. (2012) Джерфишерит в ксенолитах деформированных перидотитов трубки Удачная-Восточная (Якутия): проблемы происхождения и связь с кимберлитовым магматизмом. Геология и геофизика, 53(3), 321-340.
  6. Abersteiner A., Kamenetsky V.S., Goemann K., Golovin A.V., Sharygin I.S., Giuliani A., Rodemann T., Spetsius Z.V., Kamenetsky M. (2019) Djerfisherite in kimberlites and their xenoliths: Implications for kimberlite melt evolution. Contrib. Miner. Petrol., 174(8).
  7. Clarke D.B. (1979) Synthesis of nickeloan djerfisherite and the origin of potassic sulphides at the Frank Smith mine. The mantle sample: Inclusions in kimberlites and other volcanics. Proc. Second Int. Kimberlite Conf. V. 2. 300-307.
  8. Clay P.L., O’Driscoll B., Upton B.G.J., Busemann H. (2014) Characteristics of djerfisherite from fluid-rich, metasomatized alkaline intrusive environments and anhydrous enstatite chondrites and achondrites. Amer. Miner., 99, 1683-1693.
  9. El Goresy A., Yabuki H., Ehlers K., Woolum D., Pernicka E. (1988) Qingzhen and Yamato-691: A tentative alphabet for the EH chondrites. Proc. NIPR Symp. Antarct. Meteorites, 1, 65-101.
  10. Fuchs L.H. (1966) Djerfisherite, alkali cooper iron sulfide: A new mineral from enstatite chondrites. Science, 153(3732), 166-167.
  11. Golovin A.V., Goryanov S.V., Kokh S.N., Sharygin I.S., Rashchenko S.V., Kokh K.A., Sokol E.V., Devyatiyarova A.S. (2017) The application of Raman spectroscopy to djerfisherite identification. J. Raman Spectroscopy, 48, 1574-1582.
  12. Lin Y., El Goresy A. (2002) A comparative study of opaque phases in Qingzhen (EH3) and MacAlpine Hills 88136 (EL3): Representatives of EH and EL parent bodies. Meteor. Planet. Sci., 37(4), 577-599.
  13. Petříček V., Palatinus L., Plášil J., Dušek M. (2023) Jana2020 – a New Version of the Crystallographic Computing System Jana. Zeitschrift Für Kristallographie – Crystalline Materials, 238(7-8), 271-282.
  14. Sharygin V.V., Golovin A.V., Pokhilenko N.P., Kamenetsky V.S. (2007) Djerfisherite in the Udachnaya-East pipe kimberlites (Sakha-Yakutia, Russia): Paragenesis, composition and origin. Europ. J. Minerol., 19, 51-63.
  15. Sokol E.V., Deviatiiarova A.S., Kokh S.N., Reutsky V.N., Abersteiner A., Philippova K.A., Artemyev D.A. (2021) Sulfide Minerals as Potential Tracers of Isochemical Processes in Contact Metamorphism: Case Study of the Kochumdek Aureole, East Siberia. Minerals, 11(1), 17.
  16. Wojdyr M. (2010) Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr., 43, 1126-1128.
  17. Zaccarini F., Thalhammer A.O.R., Princivalle F., Lenaz D., Stanley C.J., Garuti G. (2007) Djerfisherite in the Guli dunite complex, Polar Siberia: A primary or metasomatic phase? Can. Mineralogist, 45, 1201-1211.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Potapov S.V., Sharygin I.S., Medvedev V.Y., Ivanova L.A., Rashchenko S.V., Shcherbakov Y.D.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).