Гальвано-, потенциостатическое восстановление многослойного оксида графена в щелочном электролите

Обложка

Цитировать

Полный текст

Аннотация

Приведены результаты исследования электрохимического восстановления многослойного оксида графена при гальваностатическом и потенциостатическом режиме, показана возможность использования щелочного электролита KOH с концентрацией 0.01 М. Идентификация электрохимически восстановленного оксида графена проводилась методами рентгенофазового анализа, ИК-Фурье и ИК-КР спектроскопией. На основе анализа ИК-КР спектров установлено увеличение общей дефектности, снижение концентрации кислородсодержащих групп и уменьшение размера кристаллита оксида графена.

Об авторах

Сергей Витальевич Брудник

Саратовский государственный технический университет им. Гагарина Ю. А.

ORCID iD: 0000-0001-7093-6494
410054, г. Саратов, ул. Политехническая, 77

Андрей Васильевич Яковлев

Саратовский государственный технический университет им. Гагарина Ю. А.

ORCID iD: 0000-0002-3542-1927
410054, г. Саратов, ул. Политехническая, 77

Елена Владимировна Яковлева

Саратовский государственный технический университет им. Гагарина Ю. А.

ORCID iD: 0000-0002-8489-9804
410054, г. Саратов, ул. Политехническая, 77

Андрей Алексеевич Алфёров

Саратовский государственный технический университет им. Гагарина Ю. А.

ORCID iD: 0000-0003-2610-9365
410054, г. Саратов, ул. Политехническая, 77

Список литературы

  1. Panahi-Sarmad M., Chehrazi E., Noroozi M., Raef M., Razzaghi-Kashani M., Baian M. A. H. Tuning the Surface Chemistry of Graphene Oxide for Enhanced Dielectric and Actuated Performance of Silicone Rubber Composites // CS Appl. Electron. Mater. 2019. Vol. 1, № 2. P. 198–209. https://doi.org/10.1021/acsaelm.8b00042
  2. Yu W., Sisi L., Haiyan Y., Jie L. Progress in the functional modification of graphene/graphene oxide: A review // RSC Adv. 2020. Vol. 10. P. 15328–15345. https://doi.org/10.1039/D0RA01068E
  3. Sun L. Structure and synthesis of graphene oxide // Chin. J. Chem. Eng. 2019. Vol. 27, iss. 10. P. 2251–2260. https://doi.org/10.1016/j.cjche.2019.05.003
  4. Paulchamy B., Arthi G., Lignesh B. D. A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomateria // J. Nanomed. Nanotechnol. 2015. Vol. 6, № 1. P. 1–4. https://doi.org/10.4172/2157-7439.1000253
  5. Ambrosi A., Chua C. K., Latiff N. M., Loo A. H., Wong C. H. A., Eng A. Y. S., Pumera M. Graphene and its electrochemistry – an update // Chemical Society Reviews. 2019. Vol. 45, № 9. P. 2458–2493. https://doi.org/10.1039/C6CS00136J
  6. Renteria J. A. Q., Ruiz-Garcia C., Sauvage T., Chazaro-Ruiz L. F., Rangel-Mendez J. R., Ania C. O. Photochemical and electrochemical reduction of graphene oxide thin films: Tuning the nature of surface defects // Physical Chemistry Chemical Physics. 2020. Vol. 22, № 36. P. 20732–20743. https://doi.org/10.1039/D0CP02053B
  7. Tarcan R., Todor-Boer O., Petrovai I., Leordean C., Astilean S., Botiz I. Reduced graphene oxide today // J. Mater. Chem. С. 2020. Vol. 8. P. 1198– 1224. https://doi.org/10.1039/C9TC04916A
  8. Брудник С. В., Яковлев А. В., Яковлева Е. В., Алфёров А. А., Целуйкин В. Н., Мостовой А. С. Электрохимическое восстановление многослойного оксида графена в щелочном электролите // Электрохимическая энергетика. 2023. Т. 23, № 1. С. 33–40. https://doi.org/10.18500/1608-4039-2023-23-1-33-40
  9. Yakovlev A. V., Yakovleva E. V., Tseluikin V. N., Krasnov V. V., Mostovoy A. S., Rakhmetulina L. A., Frolov I. N. Electrochemical synthesis of multilayer graphene oxide by anodic oxidation of disperse graphite // Russ. J. Electrochem. 2019. Vol. 55, № 12. P. 1196–1202. https://doi.org/10.1134/S102319351912019X
  10. Tuinstra F., Koenig J. L. Raman spectrum of graphite // The Journal of Chemical Physics. 1970. Vol. 53, № 3. P. 1126–1130.
  11. Claramunt S., Varea A., Lopez-Diaz D. The Importance of Interbands on the Interpretation of the Raman Spectrum of Graphene Oxide // The Journal of Physical Chemistry C. 2015. Vol. 119, № 18. P. 10123– 10129.
  12. Zhang Q., Scrafford K., Li M. Anomalous Capacitive Behaviors of Graphene Oxide Based SolidState Supercapacitors // Nano Lett. 2014. Vol. 14. P. 1938. https://doi.org/10.1021/nl4047784
  13. Goodwin D. G., Adeleye A. S., Sung L. Detection and quantification of graphene-family nanomaterials in the environment // Environmental Science & Technology. 2018. Vol. 52, № 8. P. 4491– 4513. https://doi.org/10.1021/acs.est.7b04938
  14. Radon A., Wlodarczyk P., Lukowiec D. Structure, temperature and frequency depend en telectrical conductivity of oxidized and reduced electrochemically exfoliated graphite // Physica E: LowDimensional Systems and Nanostructures. 2018. Vol. 99. P. 82–90. https://doi.org/10.1016/j.physe.2018.01.025

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).