Galvanostatic and potentiostatic reduction of multilayer graphene oxide in alkaline electrolyte

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The results of the study of electrochemical reduction of multilayer graphene oxide in galvanostatic and potentiostatic modes are presented, the possibility of using the alkaline electrolyte KOH with the concentration of 0.01 M is shown. The identification of electrochemically reduced graphene oxide was carried out by XRD analysis, IR and Raman spectroscopy. Based on the analysis of Raman spectra, the increase in the total defectiveness,the decrease in the concentration of oxygen-containing groups and the decrease in the crystallite size of graphene oxide were determined.

Авторлар туралы

Sergei Brudnik

The Saratov State Technical University of Gagarin Yu. A.

ORCID iD: 0000-0001-7093-6494
77, Politekhnicheskaya St., Saratov, 410054

Andrei Yakovlev

The Saratov State Technical University of Gagarin Yu. A.

ORCID iD: 0000-0002-3542-1927
77, Politekhnicheskaya St., Saratov, 410054

Elena Yakovleva

The Saratov State Technical University of Gagarin Yu. A.

ORCID iD: 0000-0002-8489-9804
77, Politekhnicheskaya St., Saratov, 410054

Andrei Alferov

The Saratov State Technical University of Gagarin Yu. A.

ORCID iD: 0000-0003-2610-9365
77, Politekhnicheskaya St., Saratov, 410054

Әдебиет тізімі

  1. Panahi-Sarmad M., Chehrazi E., Noroozi M., Raef M., Razzaghi-Kashani M., Baian M. A. H. Tuning the Surface Chemistry of Graphene Oxide for Enhanced Dielectric and Actuated Performance of Silicone Rubber Composites // CS Appl. Electron. Mater. 2019. Vol. 1, № 2. P. 198–209. https://doi.org/10.1021/acsaelm.8b00042
  2. Yu W., Sisi L., Haiyan Y., Jie L. Progress in the functional modification of graphene/graphene oxide: A review // RSC Adv. 2020. Vol. 10. P. 15328–15345. https://doi.org/10.1039/D0RA01068E
  3. Sun L. Structure and synthesis of graphene oxide // Chin. J. Chem. Eng. 2019. Vol. 27, iss. 10. P. 2251–2260. https://doi.org/10.1016/j.cjche.2019.05.003
  4. Paulchamy B., Arthi G., Lignesh B. D. A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomateria // J. Nanomed. Nanotechnol. 2015. Vol. 6, № 1. P. 1–4. https://doi.org/10.4172/2157-7439.1000253
  5. Ambrosi A., Chua C. K., Latiff N. M., Loo A. H., Wong C. H. A., Eng A. Y. S., Pumera M. Graphene and its electrochemistry – an update // Chemical Society Reviews. 2019. Vol. 45, № 9. P. 2458–2493. https://doi.org/10.1039/C6CS00136J
  6. Renteria J. A. Q., Ruiz-Garcia C., Sauvage T., Chazaro-Ruiz L. F., Rangel-Mendez J. R., Ania C. O. Photochemical and electrochemical reduction of graphene oxide thin films: Tuning the nature of surface defects // Physical Chemistry Chemical Physics. 2020. Vol. 22, № 36. P. 20732–20743. https://doi.org/10.1039/D0CP02053B
  7. Tarcan R., Todor-Boer O., Petrovai I., Leordean C., Astilean S., Botiz I. Reduced graphene oxide today // J. Mater. Chem. С. 2020. Vol. 8. P. 1198– 1224. https://doi.org/10.1039/C9TC04916A
  8. Брудник С. В., Яковлев А. В., Яковлева Е. В., Алфёров А. А., Целуйкин В. Н., Мостовой А. С. Электрохимическое восстановление многослойного оксида графена в щелочном электролите // Электрохимическая энергетика. 2023. Т. 23, № 1. С. 33–40. https://doi.org/10.18500/1608-4039-2023-23-1-33-40
  9. Yakovlev A. V., Yakovleva E. V., Tseluikin V. N., Krasnov V. V., Mostovoy A. S., Rakhmetulina L. A., Frolov I. N. Electrochemical synthesis of multilayer graphene oxide by anodic oxidation of disperse graphite // Russ. J. Electrochem. 2019. Vol. 55, № 12. P. 1196–1202. https://doi.org/10.1134/S102319351912019X
  10. Tuinstra F., Koenig J. L. Raman spectrum of graphite // The Journal of Chemical Physics. 1970. Vol. 53, № 3. P. 1126–1130.
  11. Claramunt S., Varea A., Lopez-Diaz D. The Importance of Interbands on the Interpretation of the Raman Spectrum of Graphene Oxide // The Journal of Physical Chemistry C. 2015. Vol. 119, № 18. P. 10123– 10129.
  12. Zhang Q., Scrafford K., Li M. Anomalous Capacitive Behaviors of Graphene Oxide Based SolidState Supercapacitors // Nano Lett. 2014. Vol. 14. P. 1938. https://doi.org/10.1021/nl4047784
  13. Goodwin D. G., Adeleye A. S., Sung L. Detection and quantification of graphene-family nanomaterials in the environment // Environmental Science & Technology. 2018. Vol. 52, № 8. P. 4491– 4513. https://doi.org/10.1021/acs.est.7b04938
  14. Radon A., Wlodarczyk P., Lukowiec D. Structure, temperature and frequency depend en telectrical conductivity of oxidized and reduced electrochemically exfoliated graphite // Physica E: LowDimensional Systems and Nanostructures. 2018. Vol. 99. P. 82–90. https://doi.org/10.1016/j.physe.2018.01.025

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).