New cathode material La2/3Cu3Ti4 – xFexO12 – δ for solid oxide fuel cell: Synthesis and electrical conductivity

Capa

Citar

Texto integral

Resumo

Copper lanthanum titanate La2/3Cu3Ti4−xFexO12−δ x = 0–1 was doped with Fe3+ cations. The diagram of the dependence of the tolerance factor on the relative electronegativity of cations for all studied compositions was represented. It was shown that all the compositions exist in the region of existence of distorted perovskite. X-ray diffraction and X-ray phase analysis methods established the region of existence of solid solutions of La2/3Cu3Ti4−xFexO12−δ obtained by ceramic technology, which was 0 ⩽ x ⩽ 0.4. The temperature dependences of electrical conductivity for the compositions from the region of existence of solid solutions La2/3Cu3Ti4−xFexO12−δ were obtained. The ionic-electronic nature of conductivity was suggested. It was shown that the decrease of electronic conductivity under the increase of iron content was due to the compensation of electronic carriers formed during acceptor doping.

Sobre autores

Marina Pantyukhina

Institute of Solid State Chemistry

ORCID ID: 0000-0001-7743-1333
Código SPIN: 4212-1141
Scopus Author ID: 6603535593
Researcher ID: JBI-9365-2023
91 Pervomayskaya St.,

Liliya Dunyushkina

Institute of high-temperature Electrochemistry UB of RAS

ORCID ID: 0000-0003-3369-5454
Código SPIN: 4863-9960
20, Akademicheskaya St., Yekaterinburg, 620990

Bibliografia

  1. Bhalla A. S., Ruyan Guo, Rustum Roy. The perovskite structure – a review of its role in ceramic science and technology // Mater. Res. Innov. 2000. Vol. 4, № 1. P. 3–26. https://doi.org/10.1007/s100190000062
  2. Istomin S. Ya., Lyskov N. V., Mazo G. N., Antipov E. V. Electrode materials based on complex d-metal oxides for symmetrical solid oxide fuel cells // Russ. Chem. Rev. 2021. Vol. 90, № 6. P. 644–676. https://10.1070/RCR4979
  3. Get’man E. I., Loboda S. N., Sidorkina M. A. CaCu3Ti4O12-based materials with variable copper content // Russian Journal of Inorganic Chemistry. 2009. Vol. 54, № 3. P. 346–349. https://10.1134/S0036023609030024
  4. Zhuk N. A., Nekipelov S. V., Sivkov V. N., Sekushin N. A., Lutoev V. P., Makeev B. A., Koroleva A. V., Fedorova A. V., Koksharova L. A., Ignatova M. M., Korolev R. I. Magnetic and electric properties, ESR, XPS and NEXAFS spectroscopy of CaCu3Ti4O12 ceramics // Ceramics International. 2020. Vol. 46. P. 21410–21420. https://10.1016/j.ceramint.2020.05.239
  5. Zhuk N. A., Shugurov S. M., Belyy V. A., Makeev B. A., Yermolina M. V., Beznosikov D. S., Koksharova L. A. Thermal stability of CaCu3Ti4O12: Simultaneous thermal analysis and high-temperature mass spectrometric study // Ceramics International. 2018. Vol. 44. P. 20841–20844. https://10.1016/j.ceramint.2018.08.088
  6. Ahmad M. M., Kotb H. M., Joseph C., Kumar Sh., Alshoaibi A. Transport and Dielectric Properties of Mechanosynthesized La2/3Cu3Ti4O12 Ceramics // Crystals. 2021. Vol. 11. Article number 313. https://10.3390/cryst11030313
  7. Shri Prakash B., Varma K. B. R. Effect of sintering conditions on the microstructural, dielectric, ferroelectric and varistor properties of CaCu3Ti4O12 and La2/3Cu3Ti4O12 ceramics belonging to the high and low dielectric constant members of ACu3M4O12 (A = alkali, alkaline-earth metal, rare-earth metal or vacancy, M = transition metal) family of oxides // Physica B. 2008. Vol. 40. P. 2246–2254. https://doi.org/10.1016/j.physb.2007.12.004
  8. Shri Prakash B., Varma K. B. R. Effect of sintering conditions on the dielectric properties of CaCu3Ti4O12 and La2/3Cu3Ti4O12 ceramics: A comparative study // Physica B. 2006. Vol. 382. P. 312–319. https://doi.org/10.1016/j.physb.2006.03.005
  9. Fu Zh., Nie H., Wei Y., Bo Zhang B., Chang A. Effect of Mn-doping on microstructure and electrical properties of La2/3Cu3Ti4O12 ceramics // J. Alloys Compd. 2020. Vol. 847. Article number 156525. https://doi.org/10.1016/j.jallcom.2020.156525
  10. Фесенко Е. Г. Семейство перовскита и сегнетоэлектричество М. : Атомиздат, 1972. 248 с.
  11. Shannon R. D., Prewitt C. T. Effective ionic radii in oxides and fluorides // Acta Crystallogr. 1969. Vol. 25, № 3. P. 925–946. https://doi.org/10.1107/s0567740869003220
  12. Химия. Справочное издание / под ред. В. Шестер, К.-Х. Лаутеншлегнер. M. : Химия, 1979. 139 с.
  13. Schmidt R., Sinclair D. C. Chapter 1. CaCu3Ti4O12 (CCTO) Ceramics for Capacitor Applications // Capacitors: Theory of Operation, Behavior and Safery Regulations / ed. Kristofer N. Muller. Nova Science Publishers Inc., 2013. P. 1–33.
  14. Ngamou P. H. T., Bahlawane N. Influence of the Arrangement of the Octahedrally Coordinated Trivalent Cobalt Cations on the Electrical Charge Transport and Surface Reactivity // Chem. Mater. 2010. Vol. 22. P. 4158–4165. https://doi.org/10.1021/cm1004642
  15. Istomin S. Ya., Antipov E. V. Cathode materials based on perovskite-like transition metal oxides for intermediate temperature solid oxide fuel cells // Russian Chemical Reviews. 2013. Vol. 82, № 7. P. 686–700. https://doi.org/10.1070/RC2013v082n07ABEH004390

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).