Electrochemical characteristics of lithium-sulfur pouch cells. Effect of compression force of electrode modules

Cover Page

Cite item

Full Text

Abstract

The effect of the electrode sizes, the cell design and the compression force of the electrode modules on the impedance and discharge characteristics of lithium-sulfur cells was studied. It was shown that Swagelok and pouch cells with identical electrodes have different electrochemical characteristics – charge transfer resistance, discharge capacity and cycling duration. It was found that the discharge capacity at the first cycle of Swagelok and pouch cells differs by 20% approximately. The capacity of pouch cells decreases faster during cycling. The cycling of pouch cells in a compressed state (similar to Swagelok cells) does not improve the electrochemical characteristics of pouch cells.

About the authors

Dmitry Vladimirovich Kolosnitsyn

Ufa Institute of Chemistry of the Russian Academy of Sciences

69 Prospect Oktyabrya, Ufa 450054, Russia

Nadezhda V. Egorova

Ufa Institute of Chemistry of the Russian Academy of Sciences

ORCID iD: 0000-0002-8095-6832
69 Prospect Oktyabrya, Ufa 450054, Russia

Alena M. Ionina

Ufa Institute of Chemistry of the Russian Academy of Sciences

ORCID iD: 0009-0005-4842-7294
69 Prospect Oktyabrya, Ufa 450054, Russia

Elena Vladimirovna Kuzmina

Ufa Institute of Chemistry of the Russian Academy of Sciences

ORCID iD: 0000-0002-3758-4762
Scopus Author ID: 6701413998
ResearcherId: A-9687-2011
69 Prospect Oktyabrya, Ufa 450054, Russia

Elena Vladimirovna Karaseva

Institute of Organic Chemistry of the Ufa RAS Scientific Center

ORCID iD: 0000-0002-8447-7230
Scopus Author ID: 7005028309
71, Oktyabrya Ave, Ufa, 450054

Vladimir Sergeevich Kolosnitsyn

Institute of Organic Chemistry of the Ufa RAS Scientific Center

ORCID iD: 0000-0003-1318-6943
71, Oktyabrya Ave, Ufa, 450054

References

  1. Deng W., Phung J., Li G., Wang X. Realizing high-performance lithium-sulfur batteries via rational design and engineering strategies. Nano Energy, 2021, vol. 82, pp. 2211–2234. https://doi.org/10.1016/j.nanoen.2021.105761
  2. Chen Z. X., Hou L. P., Bi C. X., Cheng Q., Zhang X. Q., Li B. Q., Huang J. Q. Failure analysis of high-energy-density lithium-sulfur pouch cells. Energy Storage Materials, 2022, vol. 53, pp. 315–321. https://doi.org/10.1016/j.ensm.2022.07.035
  3. Privaldos O. L. A., Lee C., Kim J. W., Lee J. Exploring failure mechanism studies for lithium-sulfur battery pouch cells. Current Opinion in Electrochemistry, 2024, vol. 45, article no. 101516. https://doi.org/10.1016/j.coelec.2024.101516
  4. Dörfler S., Althues H., Härtel P., Abendroth Th., Schumm B., Kaskel S. Challenges and Key Parameters of Lithium-Sulfur Batteries on Pouch Cell Level. Joule, 2020, vol. 4, pp. 539–554. https://doi.org/10.1016/j.joule.2020.02.006
  5. Jie Y., Tang C., Xu Y., Guo Y., Li W., Chen Y., Jia H., Zhang J., Yang M., Cao R., Lu Y., Cho J., Jiao S. Progress and Perspectives on the Development of Pouch-Type Lithium Metal Batteries. Angewandte Chemie International Edition, 2023, vol. 63, iss. 7, article no. e202307802. https://doi.org/10.1002/anie.202307802
  6. Pathak A. D., Eunho C., Wonbong C. Towards the commercialization of Li-S battery: From lab to industry. Energy Storage Materials, 2024, vol. 72, article no. 103711. https://doi.org/10.1016/j.ensm.2024.103711
  7. Das S., Gupta N., Okpowe O., Choi A., Sweeny J., Olawale, Pol V. G. Optimization of the Form Factors of Advanced Li-S Pouch Cells. Small, 2024, vol. 20, iss. 31, article no. 202311850. https://doi.org/10.1002/smll.202311850
  8. Chen Y., Choi S., Su D., Gao X., Wang G. Self-standing sulfur cathodes enabled by 3D hierarchically porous titanium monoxide-graphene composite film for high-performance lithium-sulfur batteries. Nano Energy, 2018, vol. 47, pp. 331–339.
  9. Yang Y., Zheng G., Cui Y. Nanostructured sulfur cathodes. Chem. Soc. Rev., 2013, vol. 42, pp. 3018–3032.
  10. Feng X., Tan S., Xin S. Critical material and device parameters for building a beyond-500-Wh/kg lithium-sulfur battery. Next Materials, 2025, vol. 6, article no. 100395. https://doi.org/10.1016/j.nxmate.2024.100395
  11. Ding N., Yang J., Li X., Liu Z., Zong Y. Engineering High-Performance Sulfur Electrode from Industrial Conductive Carbons. ACS Sustainable Chem. Eng., 2019, vol. 7, iss. 5, pp. 5515–5523.
  12. Canas N. A., Hirose K., Pascucci B., Wagner N., Friedrich K. A., Hiesgen R. Investigations of lithium-sulfur batteries using electrochemical impedance spectroscopy. Electrochimica Acta, 2013, vol. 97, pp. 42–51. https://doi.org/10.1016/j.electacta.2013.02.101
  13. Capkova D., Knap V., Strakova Fedorkova A., Stroe D.-I. Analysis of 3.4 Ah lithium-sulfur pouch cells by electrochemical impedance spectroscopy. Journal of Energy Chemistry, 2022, vol. 72, pp. 318–325. https://doi.org/10.1016/j.jechem.2022.05.026
  14. Kolosnitsyn V. S., Kuzmina E. V., Karaseva E. V., Mochalov S. E. A study of the electrochemical processes in lithium-sulphur cells by impedance spectroscopy. J. Power Sources, 2011, vol. 196, pp. 1478–1482. https://doi.org/10.1016/j.jpowsour.2010.08.105.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).