Forecast for usage of germanium in lithium-ion batteries

Cover Page

Cite item

Full Text

Abstract

Germanium is an attractive element for the anodes in lithium-ion battery. The current article discusses the issue of the availability of raw material for the battery industry, particularly in relation to Russia.

About the authors

Tat'yana L'vovna Kulova

Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS

ORCID iD: 0000-0002-5838-804X
SPIN-code: 1321-1818
Scopus Author ID: 6701624947
ResearcherId: J-8006-2013
31, Leninsky Ave, Moscow, 119071

Aleksandr Mordukhaevich Skundin

Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS

ORCID iD: 0000-0001-7627-5703
SPIN-code: 7707-6164
Scopus Author ID: 7004327964
ResearcherId: A-8371-2014
31, Leninsky Ave, Moscow, 119071

References

  1. Кулова Т. Л., Скундин А. М. Проблемы развития литий-ионных аккумуляторов в мире и в России // Электрохимическая энергетика. 2023. Т. 23, № 3. С. 111–120. https://doi.org/10.18500/1608-4039-2023-23-3-111-120
  2. Grey C. P., Hall D. S. Prospects for lithium-ion batteries and beyond–a 2030 vision // Nat. Commun. 2020. Vol. 11. P. 6279–6282. https://doi.org/10.1038/s41467-020-19991-4
  3. Кулова Т. Л., Скундин А. М. Применение германия в литий-ионных и натрий-ионных аккумуляторах // Электрохимия. 2021. Т. 57, № 12. С. 709−742. https://doi.org/10.31857/S0424857021110050
  4. Liu Y., Zhang S., Zhu T. Germanium-Based Electrode Materials for Lithium-Ion Batteries // ChemElectroChem. 2014. Vol. 1, iss. 4. P. 706–713. https://doi.org/10.1002/celc.201300195
  5. Tian H., Xin F., Wang X., He W., Han W. High capacity group-IV elements (Si, Ge, Sn) based anodes for Lithium-ion Batteries // J. Materiomics. 2015. Vol. 1, iss. 3. P. 153–174. https://doi.org/10.1016/j.jmat.2015.06.002
  6. Wu S., Han C., Iocozzia J., Lu M., Ge R., Xu R., Lin Z. Germanium-Based Nanomaterials for Rechargeable Batteries // Angew. Chem. Int. Ed. 2016. Vol. 55, iss. 28. P. 7898–7923. https://doi.org/10.1002/anie.201509651
  7. Hu Z., Zhang S., Zhang C., Cui G. High performance germanium-based anode materials // Coord. Chem. Rev. 2016. Vol. 326. P. 34–85. http://dx.doi.org/10.1016/j.ccr.2016.08.002
  8. Hao J., Wang Y., Guo Q., Zhao J., Li Y. Structural Strategies for Germanium-Based Anode Materials to Enhance Lithium Storage // Particle & Particle Systems Characterization. 2019. Vol. 36, iss. 9. Article number 1900248. https://doi.org/10.1002/ppsc.201900248
  9. Liu X., Wu X.-Y., Chang B., Wang K.-X. Recent progress on germanium-based anodes for lithium ion batteries: Efficient lithiation strategies and mechanisms // Energy Storage Mater. 2020. Vol. 30. P. 146– 169. https://doi.org/10.1016/j.ensm.2020.05.010
  10. Loaiza L. C., Monconduit L., Seznec V. Si and Ge-Based Anode Materials for Li-, Na-, and K-Ion Batteries: A Perspective from Structure to Electrochemical Mechanism // Small. 2020. Vol. 16, iss. 5. Article number 1905260. https://doi.org/10.1002/smll.201905260
  11. Большая Российская энциклопедия : в 30 т. М. : БРЭ, 2006. Т. 6. С. 684–685.
  12. Виноградов А. П. Средние содержания химических элементов в главных типах изверженных горных пород земной коры // Геохимия. 1962. Т. 7. С. 555–571.
  13. Taylor S. R. Abundance of chemical elements in the continental crust: A new table // Geochim. Cosmochim. Acta. 1964. Vol. 28, iss. 8. P. 1273–1285. https://doi.org/10.1016/0016-7037(64)90129-2
  14. Adams J. H. Germanium and Germanium Compounds // ASM Handbook : in 10 vols. Vol. 2. Properties and Selection: Nonferrous Alloys and SpecialPurpose Materials. Detroit, Michigan, USA : ASM International, 1990. P. 733–738. https://doi.org/10.31399/asm.hb.v02.a0001090
  15. Arroyo F., Fernández-Pereira C. Hydrometallurgical Recovery of Germanium from Coal Gasification Fly Ash. Solvent Extraction Method // Ind. Eng. Chem. Res. 2008. Vol. 47, iss. 9. P. 3186–3191. https://doi.org/10.1021/ie7016948
  16. Tao J., Tao Z., Zhihong L. Review on resources and recycling of germanium, with special focus on characteristics, mechanism and challenges of solvent extraction // J. Cleaner Prod. 2021. Vol. 294. Article number 126217. https://doi.org/10.1016/j.jclepro.2021.126217
  17. Höll R., Kling M., Schroll E.Metallogenesis of germanium–A review // Ore Geol. Rev. 2007. Vol. 30, iss. 3-4. P. 145–180. https://doi.org/10.1016/j.oregeorev.2005.07.034
  18. Goldschmidt V. M. Geochemische Verteilungsgesetze der Element. IX Die Mengenverhältnisse der Elemente und der Atom-Arten // Skrifter Norske Videnskaps-akademi i Oslo, I. Matematisknaturvidenskapelig Klasse. 1937. Bd. C1, H. 4. Utg. for Fridtjof Nansens fond 1938. 148 S.
  19. Виноградов А. П. Закономерности распределения химических элементов в земной коре // Геохимия. 1956. Вып. 1. С. 6–52.
  20. Moskalyk R. R. Review of germanium processing worldwide // Miner. Eng. 2004. Vol. 17, iss. 3. P. 393–402. https://doi.org/10.1016/j.mineng.2003.11.014
  21. Nguyen T. H., Lee M. S. A Review on Germanium Resources and its Extraction by Hydrometallurgical Method // Miner. Process. Extr. Metall. Rev., 2021. Vol. 42, iss. 6. P. 406–426. https://doi.org/10.1080/08827508.2020.1756795
  22. Encyclopedia of Earth Sciences : in 2 vols. / ed. E. J. Dasch. New York : Macmillan Reference USA, 1996. Vol. 1. 563 p.
  23. Frenzel M., Ketris M. P., Gutzmer J. On the geological availability of germanium // Miner. Depos. 2014. Vol. 49, iss. 4. P. 471–486. https://doi.org/10.1007/s00126-013-0506-z
  24. Patel M., Karamalidis A. K. Germanium: A review of its US demand, uses, resources, chemistry, and separation technologies // Sep. Purif. Technol. 2021. Vol. 275. Article number 118981. https://doi.org/10.1016/j.seppur.2021.118981
  25. Dai S., Finkelman R. B. Coal as a promising source of critical elements: Progress and future prospects // Int. J. Coal Geol. 2018. Vol. 186. P. 155– 164. https://doi.org/10.1016/j.coal.2017.06.005
  26. Arroyo F., Font O., Chimenos J. M., Fernández-Pereira C., Querol X., Coca P. IGCC fly ash valorisation. Optimisation of Ge and Ga recovery for an industrial application // Fuel Process Technol. 2014. Vol. 124. P. 222–227. http://dx.doi.org/10.1016/j.fuproc.2014.03.004
  27. Вялов В. И., Олейникова Г. А., Наставкин А. В. Особенности распределения германия в углях Павловского месторождения // Химия твёрдого топлива. 2020. № 3. С. 42–49. https://doi.org/10.31857/S0023117720030111
  28. Arbuzov S. I., Chekryzhov I. Yu., Spears D. A., Ilenok S. S., Soktoev B. R., Popov N. Yu. Geology, geochemistry, mineralogy and genesis of the Spetsugli high-germanium coal deposit in the Pavlovsk coalfield, Russian Far East // Ore Geol. Rev. 2021. Vol. 139. Article number 104537. https://doi.org/10.1016/j.oregeorev.2021.104537

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).