Microtubular solid oxide cells for carbon dioxide and water steam co-electrolysis

Cover Page

Cite item

Full Text

Abstract

In this work, a microtubular cell with an LNO-SDC-based air electrode fabricated using the phase inversion method was investigated. The microstructure of a single cell was characterized using scanning electron microscopy. The electrochemical parameters were measured in the mode of co-electrolysis of water steam and carbon dioxide. The obtained results indicated the high efficiency of the microtubular cell.

About the authors

Mariya О. Khokhlova

Institute of Chemistry of a Solid body and Mechanochemistry of the Siberian Branch of RAS

ORCID iD: 0000-0002-0728-6369
18, Kutateladze St., Novosibirsk, 630128

Elena V. Shubnikova

Institute of Chemistry of a Solid body and Mechanochemistry of the Siberian Branch of RAS

ORCID iD: 0000-0002-8595-7121
18, Kutateladze St., Novosibirsk, 630128

Evgeniy S. Tropin

Institute of Chemistry of a Solid body and Mechanochemistry of the Siberian Branch of RAS

ORCID iD: 0000-0003-4180-6054
18, Kutateladze St., Novosibirsk, 630128

Olga A. Bragina

Institute of Chemistry of a Solid body and Mechanochemistry of the Siberian Branch of RAS

ORCID iD: 0000-0003-2356-5808
18, Kutateladze St., Novosibirsk, 630128

Alexander P. Nemudry

Institute of Chemistry of a Solid body and Mechanochemistry of the Siberian Branch of RAS

ORCID iD: 0000-0003-3698-9124
18, Kutateladze St., Novosibirsk, 630128

References

  1. Deshmukh M. K. G., Sameeroddin M., Abdul D., Sattar M. A Renewable energy in the 21st century: A review. Mater. Today: Proc., 2023, vol. 80, pp. 1756–1759. https://doi.org/10.1016/j.matpr.2021.05.501
  2. Ni M., Leung M. K., Leung D. Y. Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). Int. J. Hydrogen Energy, 2008, vol. 33, pp. 2337–2354. https://doi.org/10.1016/j.ijhydene.2008.02.048
  3. Song Y., Zhang X., Xie K., Wang G., Bao X. High‐temperature CO2 electrolysis in solid oxide electrolysis cells: Developments, challenges, and prospects. Adv. Mater., 2019, vol. 31, article no. 1902033. https://doi.org/10.1002/adma.201902033
  4. Li Y., Zhang L., Yu B., Zhu J., Wu C. CO2 high-temperature electrolysis technology toward carbon neutralization in the chemical industry. Engineering, 2023, vol. 21, pp. 101–114. https://doi.org/10.1016/j.eng.2022.02.016
  5. Ebbesen S. D., Knibbe R., Mogensen M. Coelectrolysis of steam and carbon dioxide in solid oxide cells. J. Electrochem. Soc., 2012, vol. 159, pp. F482– F489. https://doi.org/10.1149/2.076208jes
  6. Herranz J., Pătru A., Fabbri E., Schmidt T. J. Co-electrolysis of CO2 and H2O: From electrode reactions to cell-level development. Curr. Opin. Electrochem., 2020, vol. 23, pp. 89–95. https://doi.org/10.1016/j.coelec.2020.05.004
  7. Suzuki T., Yamaguchi T., Fujishiro Y., Awano M. Fabrication and characterization of micro tubular SOFCs for operation in the intermediate temperature. J. Power Sources, 2006, vol. 160, pp. 73–77. https://doi.org/10.1016/j.jpowsour.2006.01.037
  8. Shubnikova E. V., Popov M. P., Chizhik S. A., Bychkov S. F., Nemudry A. P. The modeling of oxygen transport in MIEC oxide hollow fiber membranes. Chem. Eng. J., 2019, vol. 372, pp. 251–259. https://doi.org/10.1016/j.cej.2019.04.126
  9. Khokhlova M. O., Shubnikova E. V., Tropin E. S., Lyskov N. V., Bragina O. A., Nemudry A. P. Performance and stability of microtubular solid oxide cell with LNO-SDC air electrode operating in fuel cell and electrolysis modes. Int. J. Hydrogen Energy, 2024, vol. 86, pp. 960–967. https://doi.org/10.1016/j.ijhydene.2024.08.490
  10. Monzón H., Laguna-Bercero M. A. CO2 and steam electrolysis using a microtubular solid oxide cell. J. Phys. Energy, 2019, vol. 2, article no. 014005. https://doi.org/10.1088/2515-7655/ab4250

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).