Microtubular solid oxide cells for carbon dioxide and water steam co-electrolysis
- Authors: Khokhlova M.О.1, Shubnikova E.V.1, Tropin E.S.1, Bragina O.A.1, Nemudry A.P.1
-
Affiliations:
- Institute of Chemistry of a Solid body and Mechanochemistry of the Siberian Branch of RAS
- Issue: Vol 24, No 4 (2024)
- Pages: 201-205
- Section: Articles
- URL: https://ogarev-online.ru/1608-4039/article/view/381238
- DOI: https://doi.org/10.18500/1608-4039-2024-24-4-201-205
- EDN: https://elibrary.ru/RWYSVB
- ID: 381238
Cite item
Full Text
Abstract
About the authors
Mariya О. Khokhlova
Institute of Chemistry of a Solid body and Mechanochemistry of the Siberian Branch of RAS
ORCID iD: 0000-0002-0728-6369
18, Kutateladze St., Novosibirsk, 630128
Elena V. Shubnikova
Institute of Chemistry of a Solid body and Mechanochemistry of the Siberian Branch of RAS
ORCID iD: 0000-0002-8595-7121
18, Kutateladze St., Novosibirsk, 630128
Evgeniy S. Tropin
Institute of Chemistry of a Solid body and Mechanochemistry of the Siberian Branch of RAS
ORCID iD: 0000-0003-4180-6054
18, Kutateladze St., Novosibirsk, 630128
Olga A. Bragina
Institute of Chemistry of a Solid body and Mechanochemistry of the Siberian Branch of RAS
ORCID iD: 0000-0003-2356-5808
18, Kutateladze St., Novosibirsk, 630128
Alexander P. Nemudry
Institute of Chemistry of a Solid body and Mechanochemistry of the Siberian Branch of RAS
ORCID iD: 0000-0003-3698-9124
18, Kutateladze St., Novosibirsk, 630128
References
- Deshmukh M. K. G., Sameeroddin M., Abdul D., Sattar M. A Renewable energy in the 21st century: A review. Mater. Today: Proc., 2023, vol. 80, pp. 1756–1759. https://doi.org/10.1016/j.matpr.2021.05.501
- Ni M., Leung M. K., Leung D. Y. Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). Int. J. Hydrogen Energy, 2008, vol. 33, pp. 2337–2354. https://doi.org/10.1016/j.ijhydene.2008.02.048
- Song Y., Zhang X., Xie K., Wang G., Bao X. High‐temperature CO2 electrolysis in solid oxide electrolysis cells: Developments, challenges, and prospects. Adv. Mater., 2019, vol. 31, article no. 1902033. https://doi.org/10.1002/adma.201902033
- Li Y., Zhang L., Yu B., Zhu J., Wu C. CO2 high-temperature electrolysis technology toward carbon neutralization in the chemical industry. Engineering, 2023, vol. 21, pp. 101–114. https://doi.org/10.1016/j.eng.2022.02.016
- Ebbesen S. D., Knibbe R., Mogensen M. Coelectrolysis of steam and carbon dioxide in solid oxide cells. J. Electrochem. Soc., 2012, vol. 159, pp. F482– F489. https://doi.org/10.1149/2.076208jes
- Herranz J., Pătru A., Fabbri E., Schmidt T. J. Co-electrolysis of CO2 and H2O: From electrode reactions to cell-level development. Curr. Opin. Electrochem., 2020, vol. 23, pp. 89–95. https://doi.org/10.1016/j.coelec.2020.05.004
- Suzuki T., Yamaguchi T., Fujishiro Y., Awano M. Fabrication and characterization of micro tubular SOFCs for operation in the intermediate temperature. J. Power Sources, 2006, vol. 160, pp. 73–77. https://doi.org/10.1016/j.jpowsour.2006.01.037
- Shubnikova E. V., Popov M. P., Chizhik S. A., Bychkov S. F., Nemudry A. P. The modeling of oxygen transport in MIEC oxide hollow fiber membranes. Chem. Eng. J., 2019, vol. 372, pp. 251–259. https://doi.org/10.1016/j.cej.2019.04.126
- Khokhlova M. O., Shubnikova E. V., Tropin E. S., Lyskov N. V., Bragina O. A., Nemudry A. P. Performance and stability of microtubular solid oxide cell with LNO-SDC air electrode operating in fuel cell and electrolysis modes. Int. J. Hydrogen Energy, 2024, vol. 86, pp. 960–967. https://doi.org/10.1016/j.ijhydene.2024.08.490
- Monzón H., Laguna-Bercero M. A. CO2 and steam electrolysis using a microtubular solid oxide cell. J. Phys. Energy, 2019, vol. 2, article no. 014005. https://doi.org/10.1088/2515-7655/ab4250
Supplementary files

