Electrochemical characteristics of the La0.9Sr0.1Sс0.4Mn0.6O3 – δ cathode contacting the La0.9Sr0.1SсO3 – δ proton-conducting electrolyte

Cover Page

Cite item

Full Text

Abstract

In this work, the material La0.9Sr0.1Sс0.4Mn0.6O3 – δ was synthesized using the citrate-nitrate method. The electrochemical characteristics of the material were studied using impedance spectroscopy on symmetric cells and compared with the model Pt cathode contacting the proton-conducting electrolyte. It was shown that the polarization resistance of the investigated material is approximately two orders lower than that of the model Pt electrode. Based on this, the composition of La0.9Sr0.1Sс0.4Mn0.6O3 – δ can be proposed as a promising cathodic material for proton ceramic fuel cells.

About the authors

Olga S. Bervitskaya

Vyatka State University

ORCID iD: 0009-0009-8621-9591
SPIN-code: 5760-2962
36 Moskovskaya St.

Victoria A. Ichetovkina

Vyatka State University

ORCID iD: 0009-0004-2501-5628
SPIN-code: 5290-4040
36 Moskovskaya St.

Mark S. Bobro

Vyatka State University

ORCID iD: 0009-0008-2430-2528
36 Moskovskaya St.

Anna Y. Stroeva

Vyatka State University

ORCID iD: 0000-0002-6772-3321
SPIN-code: 9453-1231
36 Moskovskaya St.

Anton Valerievich Kuzmin

Vyatka State University; Institute of Chemistry of a Solid body and Mechanochemistry of the Siberian Branch of RAS

ORCID iD: 0000-0002-0700-662X
SPIN-code: 5450-2156
36 Moskovskaya St.

References

  1. Plekhanov М. S., Kuzmin A. V., Tropin E. S., Korolev D. A., Ananyev M. V. New mixed ionic and electronic conductors based on LaScO3: Protonic ceramic fuel cells electrodes. J. Power Sources, 2020, vol. 449, article no. 227476. https://doi.org/10.1016/j.jpowsour.2019.227476
  2. Bervitskaya O. S., Stroeva A. Y., Ananchenko B. A., Ichetovkina V. A., Kuzmin A. V. Synthesis and Physico-Chemical Properties of La0.9Sr0.1Sc1–xMnxO3– δ Ceramic Materials with Mixed Electronic and Ionic Conductivity. Russ. J. Electrochem., 2024, vol. 60, pp. 1–10. https://doi.org/10.1134/S1023193524010038
  3. Mizusaki J., Yonemura Y., Kamata H., Ohyama K., Mori N., Takai H., Tagawa H., Dokiya M., Naraya K., Sasamoto T., Inaba H., Hashimoto T. Electronic conductivity, Seebeck coefficient, defect and electronic structure of nonstoichiometric La1−xSrxMnO3. Solid State Ionics, 2000, vol. 132, pp. 167–180. https://doi.org/10.1016/S0167-2738(00)00662-7
  4. Jiang S. P. Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: A review. J. Mater. Sci., 2008, vol. 43, pp. 6799–6833. https://doi.org/10.1007/s10853-008-2966-6
  5. Dai H., Yin Y., Li X., Ma C., Che Z., Hua M., Bi L. A new Sc-doped La0.5Sr0.5MnO3 – δ cathode allows high performance for proton-conducting solid oxide fuel cells. Sustainable Materials and Technologies, 2022, vol. 32, article no. e00409. https://doi.org/10.1016/j.susmat.2022.e00409
  6. Gu H., Zheng Y., Ran R., Shao Z., Jin W., X N., Ahn J. Synthesis and assessment of La0.8Sr0.2ScyMn1−yO3−δ as cathodes for solid-oxide fuel cells on scandium-stabilized zirconia electrolyte. J. Power Sources, 2008, vol. 183, pp. 471–478. https://doi.org/10.1016/j.jpowsour.2008.05.053
  7. Murray E. Perry, Barnett S. A. (La, Sr) MnO3–(Ce, Gd)O2−x composite cathodes for solid oxide fuel cells. Solid State Ionics, 2001, vol. 143, iss. 3- 4, pp. 265–273. https://doi.org/10.1016/S0167-2738(01)00871-2
  8. Lyskov N. V., Mazo G. N., Leonova L. S., Kolchina L. M., Istomin S. Ya., Antipov E. V. The effect of temperature and oxygen partial pressure on the reduction mechanism in the Pr2CuO4/Ce0.9Gd0.1O1.95 system. Russ. J. Electrochem., 2013, vol. 49, pp. 747– 752. https://doi.org/10.1134/S1023193513080120

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).