Behavior of electrodeposited silicon film on glassy carbon during lithiation and delithiation

Cover Page

Cite item

Full Text

Abstract

Silicon is one of the promising anode materials for lithium-ion batteries with enhanced performance. However, the degradation of silicon during lithiation/delithiation is still the main problem that prevents it commercial use as electrodes. In this work the behavior of a silicon film of about 5–6 µm thick electrodeposited from LiCl-KCl-CsCl-K2SiF6 melt on glassy carbon was studied during its lithiation and delithiation, the film being a part of the anode half-cell of a lithium-ion battery. For this purpose, the methods of cycling in galvanostatic mode, electrochemical impedance, and scanning electron microscopy were used. The principal possibility of lithiation/delithiation of the film was shown and its energy characteristics during multiple cycling were determined. However, during 714 charge-discharge cycles with the current being 0.84 A/g the discharge capacity decreased from 723 to 58 mA·h/g. It was noted that the cause of degradation of the investigated sample was the detachment of the film from the glassy carbon substrate and its cracking.

About the authors

Anastasiya Maksimovna Leonova

Ural Federal University named after the first President of Russia B. N. Yeltsin

ORCID iD: 0000-0001-5900-7045
SPIN-code: 9554-8860
19 Mira street, 620002 Ekaterinburg, Russia

Nataliya Maksimovna Leonova

Ural Federal University named after the first President of Russia B. N. Yeltsin

ORCID iD: 0000-0003-1016-8977
SPIN-code: 3333-0912
19 Mira street, 620002 Ekaterinburg, Russia

Andrei Viktorovich Suzdal'tsev

Ural Federal University named after the first President of Russia B. N. Yeltsin; Institute of high-temperature Electrochemistry UB of RAS

ORCID iD: 0000-0003-3004-7611
SPIN-code: 1232-0532
Scopus Author ID: 55218703800
ResearcherId: G-8015-2012
19 Mira street, 620002 Ekaterinburg, Russia

References

  1. Савина А. А., Боев А. О., Орлова Е. Д., Морозов А. В., Абакумов А. М. Никель – ключевой элемент энергетики будущего // Успехи химии. 2023. Т. 92, № 7. Номер статьи RCR5086. https://doi.org/10.59761/RCR5086
  2. Журавлев В. Д., Щеколдин С. И., Андрюшин С. Е., Шерстобитова Е. А., Нефедова К. В., Бушкова О. В. Электрохимические характеристики и фазовый состав литиймарганцевой шпинели с избытком лития Li1+xMn2O4 // Электрохимическая энергетика. 2020. Т. 20, № 3. С. 157–170. https://doi.org/10.18500/1608-4039-2020-20-3-157-170
  3. Саввина А. А., Карасева Е. В., Мочалов С. Э., Колосницын В. С. Влияние концентрации перхлората лития на числа переноса катиона лития в сульфолановых растворах // Электрохимическая энергетика. 2024. Т. 24, № 1. С. 28–37. https://doi.org/10.18500/1608-4039-2024-24-1-28-37
  4. Ли С. А., Рыжикова Е. В., Скундин А. М. Проблемы оптимизации соотношения активных масс в электродах литийионных аккумуляторов // Электрохимическая энергетика. 2020. Т. 20, № 2. С. 68–72. https://doi.org/10.18500/1608-4039-2020-20-2-68-72
  5. Абрамова Е. Н., Бобылева З. В., Дрожжин О. А., Абакумов А. М., Антипов Е. В. Неграфитизируемый углерод – анодный материал для металл-ионных аккумуляторов // Успехи химии. 2024. Т. 93, № 2. Номер статьи RCR5100. https://doi.org/10.59761/RCR5100
  6. Чемезов О. В., Исаков А. В., Аписаров А. П., Брежестовский М. С., Бушкова О. В., Баталов Н. Н., Зайков Ю. П., Шашкин А. П. Электролитическое получение нановолокон кремния из расплава KCl-KF-K2SiF6-SiO2 для композиционных анодов литий-ионных аккумуляторов // Электрохимическая энергетика. 2013. Т. 13, № 4. С. 201–204.
  7. Korchun A. V., Evshchik E. Yu., Baskakov S. A., Bushkova O. V., Dobrovolsky Y. A. Influence of a binder on the electrochemical behaviour of Si/RGO composite as negative electrode material for Li-ion batteries // Chimica Techno Acta. 2020. Vol. 7. P. 259– 268. https://doi.org/10.15826/chimtech.2020.7.4.21
  8. Суздальцев А. В., Гевел Т. А., Парасотченко Ю. А., Павленко О. Б. Краткий обзор результатов использования электроосажденного кремния для устройств преобразования и накопления энергии // Расплавы. 2023. № 1. C. 99–108. https://doi.org/10.31857/S0235010623010127
  9. Khan M., Yan S., Ali M., Mahmood F., Zheng Y., Li G., Liu J., Song X., Wang Y. Innovative solutions for high-performance silicon anodes in lithium-ion batteries: Overcoming challenges and realworld applications // Nano-Micro Lett. 2024. Vol. 16. Article number 179. https://doi.org/10.1007/s40820-024-01388-3
  10. Andersen H. F., Lie Foss C. E., Voje J., Tronstad R., Mokkelbost T., Vullum P. E., Ulvestad A., Kirkengen M., Mæhlen J. P. Silicon-carbon composite anodes from industrial battery grade silicon // Scientific Reports. 2019. Vol. 9. Article number 14814. https://doi.org/10.1038/s41598-019-51324-4
  11. Леонова Н. М., Леонова А. М., Баширов О. А., Лебедев А. С., Трофимов А. А., Суздальцев А. В. Аноды на основе С/SiC для литий-ионных источников тока // Электрохимическая энергетика. 2023. Т. 23, № 1. С. 41–50. https://doi.org/1608-4039-2023-23-1-41-50
  12. An W., Gao B., Mei Sh., Xiang B., Fu J., Wang L., Zhang Q., Chu P. K., Huo K. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes // Nature Communications. 2019. Vol. 10. Article number 1447. https://doi.org/10.1038/s41467-019-09510-5
  13. Fan Z., Wang Y., Zheng S., Xu K., Wu J., Chen S., Liang J., Shi A., Wang Zh. A submicron Si@C core-shell intertwined with carbon nanowires and graphene nanosheet as a high-performance anode material for lithium ion battery // Energy Storage Materials. 2021. Vol. 39. P. 1–10. https://doi.org/10.1016/j.ensm.2021.04.005
  14. Vivegnis S., Baudhuin L.-C., Delhalle J., Mekhalif Z., Renner F. U. Electrodeposition of silicon films from organic solvents on nanoporous copper substrates // Journal of Applied Electrochemistry. 2023. Vol. 54. P. 77–88. https://doi.org/10.1007/s10800-023-01940-w
  15. Salah M., Murphy P., Hall C., Francis C., Kerr R., Fabretto M. Pure silicon thin-film anodes for lithium-ion batteries: A review // J. Power Sources. 2019. Vol. 414. P. 48–67. https://doi.org/10.1016/j.jpowsour.2018.12.068
  16. Ilves V. G., Zuev M. B., Vasin A A., Korusenko P. M., Sokovnin S. Yu., Ulitko M. V., Gerasimov A. S. Properties of an amorphous crystalline nanopowder Si–SiO2 produced by pulsed electron beam evaporation // Materials Chemistry and Physics. 2024. Vol. 316. Article number 129026. https://doi.org/10.1016/j.matchemphys.2024.129026
  17. Dian J., Macek A., Niznansky D., Nemec I., Vrkoslav V., Chvojka T., Jelinek I. SEM and HTEM study of porous silicon-relationship between fabrication, morphology and optical properties // Applied Surface Science. 2004. Vol. 238. P. 169–174. https://doi.org/10.1016/j.apsusc.2004.05.218
  18. El Omari G., El Kindoussy Kh., Aqil M., Mouad Dahbi M., Alami J., Makha M. Advances in physical vapor deposited silicon/carbon based anode materials for Li-ion batteries // Heliyon. 2024. Vol. 10. Article number e30431. https://doi.org/10.1016/j.heliyon.2024.e30431
  19. Jiang S., Zhang Y., Fan J., Yao J., Luo L., Zhou Zh., Dong P., Xiao W. In situ constructed MgO parclose-concerted fabrication of silicon/carbon hybrids via a high-efficiency and expedited electrochemical process in molten salt // Chemical Engineering Journal. 2024. Vol. 484. Article number 149428. https://doi.org/10.1016/j.cej.2024.149428
  20. Link S., Dimitrova A., Krischok S., Ivanov S. Electrochemical deposition of silicon in organic electrolytes // Encyclopedia of Solid-Liquid Interfaces / K. Wandelt, G. Busetti, eds. Elsevier, 2024. P. 446–461. https://doi.org/10.1016/B978-0-323-85669-0.00005-2
  21. Zou X., Ji L., Ge J., Sadoway D. R., Yu E. T., Bard A. J. Electrodeposition of crystalline silicon films from silicon dioxide for low-cost photovoltaic applications // Nature Communications. 2019. Vol. 10. Article number 5772. https://doi.org/10.1038/s41467-019-13065-m
  22. Yasuda K., Nohira T. Electrochemical production of silicon // High Temperature Materials and Processes. 2022. Vol. 41. P. 247–278. https://doi.org/10.1515/htmp-2022-0033
  23. Ustinova Y., Pavlenko O., Zhuk S., Suzdaltsev A., Zaikov Yu. Electrodeposition of silicon from the low-melting LiCl-KCl-CsCl-K2SiF6 electrolytes // Journal of the Electrochemical Society. 2022. Vol. 169. Article number 032506. https://doi.org/10.1149/1945-7111/ac5a1c
  24. Pavlenko O. B., Suzdaltsev A. V., Parasotchenko Yu. A., Zaikov Yu. P. Electrochemical synthesis and characterization of silicon thin films for energy conversion // Silicon. 2023. Vol. 15. P. 7765– 7770. https://doi.org/10.1007/s12633-023-02615-z
  25. Pan K., Zou F., Canova M., Zhu Y. Kim J.-H. Systematic electrochemical characterizations of Si and SiO anodes for high-capacity Li-ion batteries // J. Power Sources. 2019. Vol. 413. P. 20–28. https://doi.org/10.1016/j.jpowsour.2018.12.010
  26. Sethuraman V. A., Srinivasan V., Newman J. Analysis of electrochemical lithiation and delithiation kinetics in silicon // Journal of the Electrochemical Society. 2013. Vol. 160. P. A394–A403. https://doi.org/10.1149/2.008303jes
  27. Kim J. S., Kim D. W., Jung H. T., Choi J. W. Controlled lithium dendrite growth by a synergistic effect of multilayered graphene coating and an electrolyte additive // Chemistry of Materials. 2015. Vol. 27. P. 2780–2787. https://doi.org/10.1021/cm503447u

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).