Embedding derived categories of Enriques surfaces in derived categories of Fano varieties
- Autores: Kuznetsov A.G.1,2,3
-
Afiliações:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Interdisciplinary Scientific Center J.-V. Poncelet
- Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE)
- Edição: Volume 83, Nº 3 (2019)
- Páginas: 127-132
- Seção: Articles
- URL: https://ogarev-online.ru/1607-0046/article/view/133782
- DOI: https://doi.org/10.4213/im8825
- ID: 133782
Citar
Resumo
Palavras-chave
Sobre autores
Alexander Kuznetsov
Steklov Mathematical Institute of Russian Academy of Sciences; Interdisciplinary Scientific Center J.-V. Poncelet; Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE)
Email: akuznet@mi-ras.ru
Doctor of physico-mathematical sciences, no status
Bibliografia
- S. Galkin, L. Katzarkov, A. Mellit, E. Shinder, Minifolds and phantoms, 2013
- А. И. Бондал, А. Е. Полищук, “Гомологические свойства ассоциативных алгебр: метод спиралей”, Изв. РАН. Сер. матем., 57:2 (1993), 3–50
- V. Przyjalkowski, C. Shramov, Hodge complexity for weighted complete intersections, 2018
- F. R. Cossec, “Reye congruences”, Trans. Amer. Math. Soc., 280:2 (1983), 737–751
- C. Ingalls, A. Kuznetsov, “On nodal Enriques surfaces and quartic double solids”, Math. Ann., 361:1-2 (2015), 107–133
- A. Beauville, Complex algebraic surfaces, Transl. from the French, London Math. Soc. Stud. Texts, 34, 2nd ed., Cambridge Univ. Press, Cambridge, 1996, x+132 pp.
- R. Hartshorne, “Ample vector bundles”, Inst. Hautes Etudes Sci. Publ. Math., 29 (1966), 63–94
- A. Kuznetsov, “Homological projective duality”, Publ. Math. Inst. Hautes Etudes Sci., 105 (2007), 157–220
- Д. О. Орлов, “Триангулированные категории особенностей и эквивалентности между моделями Ландау–Гинзбурга”, Матем. сб., 197:12 (2006), 117–132
- M. Bernardara, M. Bolognesi, D. Faenzi, “Homological projective duality for determinantal varieties”, Adv. Math., 296 (2016), 181–209
- Young-Hoon Kiem, In-Kyun Kim, Hwayoung Lee, Kyoung-Seog Lee, “All complete intersection varieties are Fano visitors”, Adv. Math., 311 (2017), 649–661
- Young-Hoon Kiem, Kyoung-Seog Lee, Fano visitors, Fano dimension and orbifold Fano hosts, 2015
- M. S. Narasimhan, “Derived categories of moduli spaces of vector bundles on curves”, J. Geom. Phys., 122 (2017), 53–58
- A. Fonarev, A. Kuznetsov, “Derived categories of curves as components of Fano manifolds”, J. Lond. Math. Soc. (2), 97:1 (2018), 24–46
Arquivos suplementares
